Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 115(10): 2044-2054, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30348447

RESUMO

Cells within mechanically dynamic tissues like arteries are exposed to ever-changing forces and deformations. In some pathologies, like aneurysms, complex loads may alter how cells transduce forces, driving maladaptive growth and remodeling. Here, we aimed to determine the dynamic mechanical properties of vascular smooth muscle cells (VSMCs) under biaxial load. Using cellular micro-biaxial stretching microscopy, we measured the large-strain anisotropic stress-strain hysteresis of VSMCs and found that hysteresis is strongly dependent on load orientation and actin organization. Most notably, under some cyclic loads, we found that VSMCs with elongated in-vivo-like architectures display a hysteresis loop that is reverse to what is traditionally measured in polymers, with unloading stresses greater than loading stresses. This reverse hysteresis could not be replicated using a quasilinear viscoelasticity model, but we developed a Hill-type active fiber model that can describe the experimentally observed hysteresis. These results suggest that cells in highly organized tissues, like arteries, can have strongly anisotropic responses to complex loads, which could have important implications in understanding pathological mechanotransduction.


Assuntos
Fenômenos Mecânicos , Modelos Biológicos , Músculo Liso Vascular/citologia , Actomiosina/metabolismo , Anisotropia , Fenômenos Biomecânicos , Mecanotransdução Celular , Análise de Célula Única
2.
J Biomech Eng ; 139(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28397957

RESUMO

The stress in a cell due to extracellular mechanical stimulus is determined by its mechanical properties, and the structural organization of many adherent cells suggests that their properties are anisotropic. This anisotropy may significantly influence the cells' mechanotransductive response to complex loads, and has important implications for development of accurate models of tissue biomechanics. Standard methods for measuring cellular mechanics report linear moduli that cannot capture large-deformation anisotropic properties, which in a continuum mechanics framework are best described by a strain energy density function (SED). In tissues, the SED is most robustly measured using biaxial testing. Here, we describe a cellular microbiaxial stretching (CµBS) method that modifies this tissue-scale approach to measure the anisotropic elastic behavior of individual vascular smooth muscle cells (VSMCs) with nativelike cytoarchitecture. Using CµBS, we reveal that VSMCs are highly anisotropic under large deformations. We then characterize a Holzapfel-Gasser-Ogden type SED for individual VSMCs and find that architecture-dependent properties of the cells can be robustly described using a formulation solely based on the organization of their actin cytoskeleton. These results suggest that cellular anisotropy should be considered when developing biomechanical models, and could play an important role in cellular mechano-adaptation.


Assuntos
Músculo Liso Vascular/citologia , Análise de Célula Única , Estresse Mecânico , Citoesqueleto de Actina/metabolismo , Anisotropia , Fenômenos Biomecânicos , Humanos , Mecanotransdução Celular , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...