Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 60(10): 5986-94, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27458210

RESUMO

Fusidic acid (FA), which was approved in the 1960s in many European and Asian countries, has gained renewed interest due to its continued effectiveness against methicillin-resistant Staphylococcus aureus As rhabdomyolysis has been reported upon coadministration of FA with statins, we aimed to elucidate the underlying molecular mechanisms that contribute to FA-statin drug-drug interactions. Because of the association between rhabdomyolysis and increased exposure to statins, we investigated if cytochrome P450 (CYP) enzymes and transporters involved in the disposition of various statins are inhibited by FA. FA was found to inhibit BCRP and OATP1B1 but not P-gp. In overexpressing cell systems, FA inhibited BCRP-mediated efflux (50% inhibitory concentration [IC50], ∼50 to 110 µM) and OATP1B1-mediated uptake (IC50, ∼4 to 35 µM) of statins at clinically relevant concentrations achievable in the intestine and liver (based on a 550-mg oral dose of FA, the expected maximum theoretical gastrointestinal concentration is ∼4 mM, and the maximum total or unbound concentration in the inlet to the liver was reported to be up to 223 µM or 11 µM, respectively, upon multiple dosing). Similarly, FA inhibited metabolism of statins in human liver microsomes (IC50, ∼17 to 195 µM). These data suggest that FA inhibits at least 3 major dispositional pathways (BCRP, OATP1B1, and CYP3A) and thus affects the clearance of several statins. We confirmed that FA is eliminated via phase 1 metabolism (primarily via CYP3A); however, there is also some phase 2 metabolism (mediated primarily by UGT1A1). Taken together, these data provide evidence for molecular mechanisms that may explain the occurrence of rhabdomyolysis when FA is administered with statins.


Assuntos
Antibacterianos/farmacologia , Inibidores das Enzimas do Citocromo P-450/farmacologia , Ácido Fusídico/farmacologia , Hepatócitos/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Microssomos Hepáticos/efeitos dos fármacos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Cães , Combinação de Medicamentos , Interações Medicamentosas , Expressão Gênica , Células HEK293 , Hepatócitos/metabolismo , Humanos , Inativação Metabólica/efeitos dos fármacos , Concentração Inibidora 50 , Transportador 1 de Ânion Orgânico Específico do Fígado/antagonistas & inibidores , Transportador 1 de Ânion Orgânico Específico do Fígado/genética , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Células Madin Darby de Rim Canino , Microssomos Hepáticos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Cultura Primária de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...