Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 15(5): e16645, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36912000

RESUMO

Sphingosine-1-phosphate (S1P), the circulating HDL-bound lipid mediator that acts via S1P receptors (S1PR), is required for normal vascular development. The role of this signaling axis in vascular retinopathies is unclear. Here, we show in a mouse model of oxygen-induced retinopathy (OIR) that endothelial overexpression of S1pr1 suppresses while endothelial knockout of S1pr1 worsens neovascular tuft formation. Furthermore, neovascular tufts are increased in Apom-/- mice which lack HDL-bound S1P while they are suppressed in ApomTG mice which have more circulating HDL-S1P. These results suggest that circulating HDL-S1P activation of endothelial S1PR1 suppresses neovascular pathology in OIR. Additionally, systemic administration of ApoM-Fc-bound S1P or a small-molecule Gi-biased S1PR1 agonist suppressed neovascular tuft formation. Circulating HDL-S1P activation of endothelial S1PR1 may be a key protective mechanism to guard against neovascular retinopathies that occur not only in premature infants but also in diabetic patients and aging people.


Assuntos
Neovascularização Retiniana , Camundongos , Animais , Receptores de Esfingosina-1-Fosfato , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/agonistas , Lipoproteínas HDL , Esfingosina , Lisofosfolipídeos
2.
Neural Regen Res ; 18(4): 701-707, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36204825

RESUMO

The majority of inherited retinal degenerative diseases and dry age-related macular degeneration are characterized by decay of the outer retina and photoreceptors, which leads to progressive loss of vision. The inner retina, including second- and third-order retinal neurons, also shows aberrant structural changes at all stages of degeneration. Müller glia, the major glial cells maintain retinal homeostasis, activating and rearranging immediately in response to photoreceptor stress. These phenomena are collectively known as retinal remodeling and are anatomically well described, but their impact on visual function is less well characterized. Retinal remodeling has traditionally been considered a detrimental chain of events that decreases visual function. However, emerging evidence from functional assays suggests that remodeling could also be a part of a survival mechanism wherein the inner retina responds plastically to outer retinal degeneration. The visual system´s first synapses between the photoreceptors and bipolar cells undergo rewiring and functionally compensate to maintain normal signal output to the brain. Distinct classes of retinal ganglion cells remain even after the massive loss of photoreceptors. Müller glia possess the regenerative potential for retinal recovery and possibly exert adaptive transcriptional changes in response to neuronal loss. These types of homeostatic changes could potentially explain the well-maintained visual function observed in patients with inherited retinal degenerative diseases who display prominent anatomic retinal pathology. This review will focus on our current understanding of retinal neuronal and Müller glial adaptation for the potential preservation of retinal activity during photoreceptor degeneration. Targeting retinal self-compensatory responses could help generate universal strategies to delay sensory disease progression.

3.
Metabolism ; 134: 155266, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35868524

RESUMO

INTRODUCTION: Choroidal neovascularization (CNV) in age-related macular degeneration (AMD) leads to blindness. It has been widely reported that increased intake of ω-3 long-chain polyunsaturated fatty acids (LCPUFA) diets reduce CNV. Of the three major pathways metabolizing ω-3 (and ω-6 LCPUFA), the cyclooxygenase and lipoxygenase pathways generally produce pro-angiogenic metabolites from ω-6 LCPUFA and anti-angiogenic ones from ω-3 LCPUFA. Howevehr, cytochrome P450 oxidase (CPY) 2C produces pro-angiogenic metabolites from both ω-6 and ω-3 LCPUFA. The effects of CYP2J2 products on ocular neovascularization are still unknown. Understanding how each metabolic pathway affects the protective effect of ω-3 LCPUFA on retinal neovascularization may lead to therapeutic interventions. OBJECTIVES: To investigate the effects of LCPUFA metabolites through CYP2J2 pathway and CYP2J2 regulation on CNV both in vivo and ex vivo. METHODS: The impact of CYP2J2 overexpression and inhibition on neovascularization in the laser-induced CNV mouse model was assessed. The plasma levels of CYP2J2 metabolites were measured by liquid chromatography and tandem mass spectroscopy. The choroidal explant sprouting assay was used to investigate the effects of CYP2J2 inhibition and specific LCPUFA CYP2J2 metabolites on angiogenesis ex vivo. RESULTS: CNV was exacerbated in Tie2-Cre CYP2J2-overexpressing mice and was associated with increased levels of plasma docosahexaenoic acids. Inhibiting CYP2J2 activity with flunarizine decreased CNV in both ω-6 and ω-3 LCPUFA-fed wild-type mice. In Tie2-Cre CYP2J2-overexpressing mice, flunarizine suppressed CNV by 33 % and 36 % in ω-6, ω-3 LCPUFA diets, respectively, and reduced plasma levels of CYP2J2 metabolites. The pro-angiogenic role of CYP2J2 was corroborated in the choroidal explant sprouting assay. Flunarizine attenuated ex vivo choroidal sprouting, and 19,20-EDP, a ω-3 LCPUFA CYP2J2 metabolite, increased sprouting. The combined inhibition of CYP2J2 with flunarizine and CYP2C8 with montelukast further enhanced CNV suppression via tumor necrosis factor-α suppression. CONCLUSIONS: CYP2J2 inhibition augmented the inhibitory effect of ω-3 LCPUFA on CNV. Flunarizine suppressed pathological choroidal angiogenesis, and co-treatment with montelukast inhibiting CYP2C8 further enhanced the effect. CYP2 inhibition might be a viable approach to suppress CNV in AMD.


Assuntos
Neovascularização de Coroide , Ácidos Graxos Ômega-3 , Degeneração Macular , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/prevenção & controle , Citocromo P-450 CYP2C8/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Ácidos Graxos Insaturados/uso terapêutico , Flunarizina/uso terapêutico , Degeneração Macular/tratamento farmacológico , Degeneração Macular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NADPH-Ferri-Hemoproteína Redutase
4.
Nutrients ; 14(7)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35405946

RESUMO

There is a gap in understanding the effect of the essential ω-3 and ω-6 long-chain polyunsaturated fatty acids (LCPUFA) on Phase I retinopathy of prematurity (ROP), which precipitates proliferative ROP. Postnatal hyperglycemia contributes to Phase I ROP by delaying retinal vascularization. In mouse neonates with hyperglycemia-associated Phase I retinopathy, dietary ω-3 (vs. ω-6 LCPUFA) supplementation promoted retinal vessel development. However, ω-6 (vs. ω-3 LCPUFA) was also developmentally essential, promoting neuronal growth and metabolism as suggested by a strong metabolic shift in almost all types of retinal neuronal and glial cells identified with single-cell transcriptomics. Loss of adiponectin (APN) in mice (mimicking the low APN levels in Phase I ROP) decreased LCPUFA levels (including ω-3 and ω-6) in retinas under normoglycemic and hyperglycemic conditions. ω-3 (vs. ω-6) LCPUFA activated the APN pathway by increasing the circulating APN levels and inducing expression of the retinal APN receptor. Our findings suggested that both ω-3 and ω-6 LCPUFA are crucial in protecting against retinal neurovascular dysfunction in a Phase I ROP model; adequate ω-6 LCPUFA levels must be maintained in addition to ω-3 supplementation to prevent retinopathy. Activation of the APN pathway may further enhance the ω-3 and ω-6 LCPUFA's protection against ROP.


Assuntos
Ácidos Graxos Ômega-3 , Hiperglicemia , Neovascularização Retiniana , Retinopatia da Prematuridade , Adiponectina/metabolismo , Animais , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Humanos , Hiperglicemia/metabolismo , Recém-Nascido , Camundongos , Retina/metabolismo , Neovascularização Retiniana/metabolismo
5.
Exp Mol Med ; 53(11): 1748-1758, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34799683

RESUMO

Photoreceptor degeneration caused by genetic defects leads to retinitis pigmentosa, a rare disease typically diagnosed in adolescents and young adults. In most cases, rod loss occurs first, followed by cone loss as well as altered function in cells connected to photoreceptors directly or indirectly. There remains a gap in our understanding of retinal cellular responses to photoreceptor abnormalities. Here, we utilized single-cell transcriptomics to investigate cellular responses in each major retinal cell type in retinitis pigmentosa model (P23H) mice vs. wild-type littermate mice. We found a significant decrease in the expression of genes associated with phototransduction, the inner/outer segment, photoreceptor cell cilium, and photoreceptor development in both rod and cone clusters, in line with the structural changes seen with immunohistochemistry. Accompanying this loss was a significant decrease in the expression of genes involved in metabolic pathways and energy production in both rods and cones. We found that in the Müller glia/astrocyte cluster, there was a significant increase in gene expression in pathways involving photoreceptor maintenance, while concomitant decreases were observed in rods and cones. Additionally, the expression of genes involved in mitochondrial localization and transport was increased in the Müller glia/astrocyte cluster. The Müller glial compensatory increase in the expression of genes downregulated in photoreceptors suggests that Müller glia adapt their transcriptome to support photoreceptors and could be thought of as general therapeutic targets to protect against retinal degeneration.


Assuntos
Células Ependimogliais/metabolismo , Células Fotorreceptoras/metabolismo , Degeneração Retiniana/etiologia , Degeneração Retiniana/metabolismo , Retinose Pigmentar/etiologia , Retinose Pigmentar/metabolismo , Animais , Astrócitos/metabolismo , Biomarcadores , Biologia Computacional/métodos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Células Fotorreceptoras/patologia , Degeneração Retiniana/diagnóstico por imagem , Degeneração Retiniana/patologia , Retinose Pigmentar/diagnóstico por imagem , Retinose Pigmentar/patologia , Análise de Célula Única , Tomografia de Coerência Óptica
6.
iScience ; 24(4): 102376, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33937726

RESUMO

The group of retinal degenerations, retinitis pigmentosa (RP), comprises more than 150 genetic abnormalities affecting photoreceptors. Finding degenerative pathways common to all genetic abnormalities may allow general treatment such as neuroprotection. Neuroprotection may include enhancing the function of cells that directly support photoreceptors, retinal pigment epithelial cells, and Müller glia. Treatment with fibroblast growth factor 21 (FGF21), a neuroprotectant, from postnatal week 4-10, during rod and cone loss in P23H mice (an RP model) with retinal degeneration, preserved photoreceptor function and normalized Müller glial cell morphology. Single-cell transcriptomics of retinal cells showed that FGF21 receptor Fgfr1 was specifically expressed in Müller glia/astrocytes. Of all retinal cells, FGF21 predominantly affected genes in Müller glia/astrocytes with increased expression of axon development and synapse formation pathway genes. Therefore, enhancing retinal glial axon and synapse formation with neurons may preserve retinal function in RP and may suggest a general therapeutic approach for retinal degenerative diseases.

7.
Acta Neuropathol Commun ; 7(1): 130, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31405387

RESUMO

Activated myeloid cells and astrocytes are the predominant cell types in active multiple sclerosis (MS) lesions. Both cell types can adopt diverse functional states that play critical roles in lesion formation and resolution. In order to identify phenotypic subsets of myeloid cells and astrocytes, we profiled two active MS lesions with thirteen glial activation markers using imaging mass cytometry (IMC), a method for multiplexed labeling of histological sections. In the acutely demyelinating lesion, we found multiple distinct myeloid and astrocyte phenotypes that populated separate lesion zones. In the post-demyelinating lesion, phenotypes were less distinct and more uniformly distributed. In both lesions cell-to-cell interactions were not random, but occurred between specific glial subpopulations and lymphocytes. Finally, we demonstrated that myeloid, but not astrocyte phenotypes were activated along a lesion rim-to-center gradient, and that marker expression in glial cells at the lesion rim was driven more by cell-extrinsic factors than in cells at the center. This proof-of-concept study demonstrates that highly multiplexed tissue imaging, combined with the appropriate computational tools, is a powerful approach to study heterogeneity, spatial distribution and cellular interactions in the context of MS lesions. Identifying glial phenotypes and their interactions at different lesion stages may provide novel therapeutic targets for inhibiting acute demyelination and low-grade, chronic inflammation.


Assuntos
Astrócitos/patologia , Comunicação Celular/fisiologia , Esclerose Múltipla Recidivante-Remitente/patologia , Células Mieloides/patologia , Fenótipo , Adulto , Astrócitos/metabolismo , Feminino , Humanos , Masculino , Esclerose Múltipla Recidivante-Remitente/metabolismo , Células Mieloides/metabolismo
8.
Plasmid ; 89: 49-56, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27825973

RESUMO

To elucidate the function of a gene in bacteria it is vital that targeted gene inactivation (allelic replacement) can be achieved. Allelic replacement is often carried out by disruption of the gene of interest by insertion of an antibiotic-resistance marker followed by subsequent transfer of the mutant allele to the genome of the host organism in place of the wild-type gene. However, due to their intrinsic resistance to many antibiotics only selected antibiotic-resistance markers can be used in members of the genus Burkholderia, including the Burkholderia cepacia complex (Bcc). Here we describe the construction of improved antibiotic-resistance cassettes that specify resistance to kanamycin, chloramphenicol or trimethoprim effectively in the Bcc and related species. These were then used in combination with and/or to construct a series enhanced suicide vectors, pSHAFT2, pSHAFT3 and pSHAFT-GFP to facilitate effective allelic replacement in the Bcc. Validation of these improved suicide vectors was demonstrated by the genetic inactivation of selected genes in the Bcc species Burkholderia cenocepacia and B. lata, and in the non-Bcc species, B. thailandensis.


Assuntos
Burkholderia/genética , DNA Bacteriano , Mutação , Plasmídeos/genética , Antibacterianos/farmacologia , Burkholderia/efeitos dos fármacos , Farmacorresistência Bacteriana , Ordem dos Genes , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...