Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 15(10): 7091-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26421945

RESUMO

Atomic force microscopy (AFM)-based single-molecule force spectroscopy (SMFS) is widely used to mechanically measure the folding and unfolding of proteins. However, the temporal resolution of a standard commercial cantilever is 50-1000 µs, masking rapid transitions and short-lived intermediates. Recently, SMFS with 0.7-µs temporal resolution was achieved using an ultrashort (L = 9 µm) cantilever on a custom-built, high-speed AFM. By micromachining such cantilevers with a focused ion beam, we optimized them for SMFS rather than tapping-mode imaging. To enhance usability and throughput, we detected the modified cantilevers on a commercial AFM retrofitted with a detection laser system featuring a 3-µm circular spot size. Moreover, individual cantilevers were reused over multiple days. The improved capabilities of the modified cantilevers for SMFS were showcased by unfolding a polyprotein, a popular biophysical assay. Specifically, these cantilevers maintained a 1-µs response time while eliminating cantilever ringing (Q ≅ 0.5). We therefore expect such cantilevers, along with the instrumentational improvements to detect them on a commercial AFM, to accelerate high-precision AFM-based SMFS studies.


Assuntos
Microscopia de Força Atômica/métodos , Análise Espectral/métodos
2.
Opt Express ; 23(13): 16554-64, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26191667

RESUMO

Advanced optical traps can probe single molecules with Ångstrom-scale precision, but drift limits the utility of these instruments. To achieve Å-scale stability, a differential measurement scheme between a pair of laser foci was introduced that substantially exceeds the inherent mechanical stability of various types of microscopes at room temperature. By using lock-in detection to measure both lasers with a single quadrant photodiode, we enhanced the differential stability of this optical reference frame and thereby stabilized an optical-trapping microscope to 0.2 Å laterally over 100 s based on the Allan deviation. In three dimensions, we achieved stabilities of 1 Å over 1,000 s and 1 nm over 15 h. This stability was complemented by high measurement bandwidth (100 kHz). Overall, our compact back-scattered detection enables an ultrastable measurement platform compatible with optical traps, atomic force microscopy, and optical microscopy, including super-resolution techniques.

3.
ACS Nano ; 8(5): 4984-95, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24670198

RESUMO

Enhancing the short-term force precision of atomic force microscopy (AFM) while maintaining excellent long-term force stability would result in improved performance across multiple AFM modalities, including single molecule force spectroscopy (SMFS). SMFS is a powerful method to probe the nanometer-scale dynamics and energetics of biomolecules (DNA, RNA, and proteins). The folding and unfolding rates of such macromolecules are sensitive to sub-pN changes in force. Recently, we demonstrated sub-pN stability over a broad bandwidth (Δf = 0.01-16 Hz) by removing the gold coating from a 100 µm long cantilever. However, this stability came at the cost of increased short-term force noise, decreased temporal response, and poor sensitivity. Here, we avoided these compromises while retaining excellent force stability by modifying a short (L = 40 µm) cantilever with a focused ion beam. Our process led to a ∼10-fold reduction in both a cantilever's stiffness and its hydrodynamic drag near a surface. We also preserved the benefits of a highly reflective cantilever while mitigating gold-coating induced long-term drift. As a result, we extended AFM's sub-pN bandwidth by a factor of ∼50 to span five decades of bandwidth (Δf ≈ 0.01-1000 Hz). Measurements of mechanically stretching individual proteins showed improved force precision coupled with state-of-the-art force stability and no significant loss in temporal resolution compared to the stiffer, unmodified cantilever. Finally, these cantilevers were robust and were reused for SFMS over multiple days. Hence, we expect these responsive, yet stable, cantilevers to broadly benefit diverse AFM-based studies.

4.
Methods ; 60(2): 131-41, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23562681

RESUMO

Atomic force microscopy (AFM) is widely used in the biological sciences. Despite 25 years of technical developments, two popular modes of bioAFM, imaging and single molecule force spectroscopy, remain hindered by relatively poor force precision and stability. Recently, we achieved both sub-pN force precision and stability under biologically useful conditions (in liquid at room temperature). Importantly, this sub-pN level of performance is routinely accessible using a commercial cantilever on a commercial instrument. The two critical results are that (i) force precision and stability were limited by the gold coating on the cantilevers, and (ii) smaller yet stiffer cantilevers did not lead to better force precision on time scales longer than 25 ms. These new findings complement our previous work that addressed tip-sample stability. In this review, we detail the methods needed to achieve this sub-pN force stability and demonstrate improvements in force spectroscopy and imaging when using uncoated cantilevers. With this improved cantilever performance, the widespread use of nonspecific biomolecular attachments becomes a limiting factor in high-precision studies. Thus, we conclude by briefly reviewing site-specific covalent-immobilization protocols for linking a biomolecule to the substrate and to the AFM tip.


Assuntos
DNA/química , Microscopia de Força Atômica/métodos , Algoritmos , Proteínas Imobilizadas/química , Limite de Detecção , Fenômenos Mecânicos , Microscopia de Força Atômica/instrumentação , Razão Sinal-Ruído
5.
Opt Express ; 21(1): 39-48, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23388894

RESUMO

Optical traps are used to measure force (F) over a wide range (0.01 to 1,000 pN). Variations in bead radius (r) hinder force precision since trap stiffness (k(trap)) varies as r3 when r is small. Prior work has shown k(trap) is maximized when r is approximately equal to the beam waist (w0), which on our instrument was ~400 nm when trapping with a 1064-nm laser. In this work, we show that by choosing r ≈w0, we improved the force precision by 2.8-fold as compared to a smaller bead (250 nm). This improvement in force precision was verified by pulling on a canonical DNA hairpin. Thus, by using an optimum bead size, one can simultaneously maximize k(trap) while minimizing errors in F.


Assuntos
Biofísica/métodos , DNA/química , Conformação de Ácido Nucleico , Óptica e Fotônica , Calibragem , Hidrodinâmica , Cinética , Lasers , Luz , Pinças Ópticas , Tamanho da Partícula , Reprodutibilidade dos Testes , Estresse Mecânico , Fatores de Tempo
6.
Nano Lett ; 12(7): 3557-61, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22694769

RESUMO

Force drift is a significant, yet unresolved, problem in atomic force microscopy (AFM). We show that the primary source of force drift for a popular class of cantilevers is their gold coating, even though they are coated on both sides to minimize drift. Drift of the zero-force position of the cantilever was reduced from 900 nm for gold-coated cantilevers to 70 nm (N = 10; rms) for uncoated cantilevers over the first 2 h after wetting the tip; a majority of these uncoated cantilevers (60%) showed significantly less drift (12 nm, rms). Removing the gold also led to ∼10-fold reduction in reflected light, yet short-term (0.1-10 s) force precision improved. Moreover, improved force precision did not require extended settling; most of the cantilevers tested (9 out of 15) achieved sub-pN force precision (0.54 ± 0.02 pN) over a broad bandwidth (0.01-10 Hz) just 30 min after loading. Finally, this precision was maintained while stretching DNA. Hence, removing gold enables both routine and timely access to sub-pN force precision in liquid over extended periods (100 s). We expect that many current and future applications of AFM can immediately benefit from these improvements in force stability and precision.


Assuntos
DNA/química , Ouro/química , Microscopia de Força Atômica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...