Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 80(19): 7609-13, 2008 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-18778033

RESUMO

This study presents a simple, label-free electrochemical technique for the monitoring of DNA ligase activity. DNA ligases are enzymes that catalyze joining of breaks in the backbone of DNA and are of significant scientific interest due to their essential nature in DNA metabolism and their importance to a range of molecular biological methodologies. The electrochemical behavior of DNA at mercury and some amalgam electrodes is strongly influenced by its backbone structure, allowing a perfect discrimination between DNA molecules containing or lacking free ends. This variation in electrochemical behavior has been utilized previously for a sensitive detection of DNA damage involving the sugar-phosphate backbone breakage. Here we show that the same principle can be utilized for monitoring of a reverse process, i.e., the repair of strand breaks by action of the DNA ligases. We demonstrate applications of the electrochemical technique for a distinction between ligatable and unligatable breaks in plasmid DNA using T4 DNA ligase, as well as for studies of the DNA backbone-joining activity in recombinant fragments of E. coli DNA ligase.


Assuntos
Quebras de DNA de Cadeia Simples , DNA Ligases/metabolismo , Técnicas Eletroquímicas/métodos , DNA Ligases/análise , DNA Super-Helicoidal/química , DNA Super-Helicoidal/metabolismo , Escherichia coli/enzimologia
2.
Anal Biochem ; 358(1): 90-8, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-16996469

RESUMO

Immobilized DNA hairpins are exploited in a novel approach to assay DNA ligases and nucleases. A fundamental characteristic of the assay is that a fluorophore at the remote terminus of the hairpin reports on the integrity of the DNA backbone. The functionality of the protocol is confirmed using ATP- and NAD+-dependent DNA ligases and the nicking enzyme N.BbvCIA. The assay format is amenable to high-throughput analysis and quantitation of enzyme activity, and it is shown to be in excellent agreement with the more laborious electrophoretic approaches that are widely used for such analyses. Significantly, the assay is used to demonstrate sequential breaking and rejoining of a specific nucleic acid. Thus, a simple platform for biochemically innovative studies of pathways in cellular nucleic acid metabolism is demonstrated.


Assuntos
DNA Ligases/análise , Reparo do DNA/fisiologia , DNA/química , Desoxirribonuclease I/análise , Conformação de Ácido Nucleico , Sequência de Bases , Biotina/química , DNA Ligases/metabolismo , Proteínas de Escherichia coli/metabolismo , Fluoresceína/química , Desnaturação de Ácido Nucleico , Estreptavidina/química
3.
Biochem J ; 398(1): 135-44, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16671895

RESUMO

The genome of bacteriophage T4 encodes three polynucleotide ligases, which seal the backbone of nucleic acids during infection of host bacteria. The T4Dnl (T4 DNA ligase) and two RNA ligases [T4Rnl1 (T4 RNA ligase 1) and T4Rnl2] join a diverse array of substrates, including nicks that are present in double-stranded nucleic acids, albeit with different efficiencies. To unravel the biochemical and functional relationship between these proteins, a systematic analysis of their substrate specificity was performed using recombinant proteins. The ability of each protein to ligate 20 bp double-stranded oligonucleotides containing a single-strand break was determined. Between 4 and 37 degrees C, all proteins ligated substrates containing various combinations of DNA and RNA. The RNA ligases ligated a more diverse set of substrates than T4Dnl and, generally, T4Rnl1 had 50-1000-fold lower activity than T4Rnl2. In assays using identical conditions, optimal ligation of all substrates was at pH 8 for T4Dnl and T4Rnl1 and pH 7 for T4Rnl2, demonstrating that the protein dictates the pH optimum for ligation. All proteins ligated a substrate containing DNA as the unbroken strand, with the nucleotides at the nick of the broken strand being RNA at the 3'-hydroxy group and DNA at the 5'-phosphate. Since this RNA-DNA hybrid was joined at a similar maximal rate by T4Dnl and T4Rnl2 at 37 degrees C, we consider the possibility that this could be an unexpected physiological substrate used during some pathways of 'DNA repair'.


Assuntos
Bacteriófago T4/enzimologia , DNA Ligases/metabolismo , Reparo do DNA , DNA/metabolismo , RNA Ligase (ATP)/metabolismo , Clonagem Molecular , DNA/química , DNA Ligases/isolamento & purificação , Escherichia coli , Concentração de Íons de Hidrogênio , Especificidade por Substrato , Temperatura
4.
Biochim Biophys Acta ; 1749(1): 113-22, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15848142

RESUMO

NAD(+)-dependent DNA ligases are essential enzymes in bacteria, with the most widely studied of this class of enzymes being LigA from Escherichia coli. NAD(+)-dependent DNA ligases comprise several discrete structural domains, including a BRCT domain at the C-terminus that is highly-conserved in this group of proteins. The over-expression and purification of various fragments of E. coli LigA allowed the investigation of the different domains in DNA-binding and ligation by this enzyme. Compared to the full-length protein, the deletion of the BRCT domain from LigA reduced in vitro ligation activity by 3-fold and also reduced DNA binding. Using an E. coli strain harbouring a temperature-sensitive mutation of ligA, the over-expression of protein with its BRCT domain deleted enabled growth at the non-permissive temperature. In gel-mobility shift experiments, the isolated BRCT domain bound DNA in a stable manner and to a wider range of DNA molecules compared to full LigA. Thus, the BRCT domain of E. coli LigA can bind DNA, but it is not essential for DNA nick-joining activity in vitro or in vivo.


Assuntos
DNA Ligases/química , Proteínas de Ligação a DNA/química , DNA/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Sequência de Bases , Sítios de Ligação , DNA/metabolismo , DNA Ligases/genética , DNA Ligases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dados de Sequência Molecular , NAD/química , NAD/metabolismo , Estrutura Terciária de Proteína , Deleção de Sequência , Especificidade por Substrato
5.
Microbiology (Reading) ; 150(Pt 12): 4171-80, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15583169

RESUMO

DNA ligases are essential enzymes in cells due to their ability to join DNA strand breaks formed during DNA replication. Several temperature-sensitive mutant strains of Escherichia coli, including strain GR501, have been described which can be complemented by functional DNA ligases. Here, it is shown that the ligA251 mutation in E. coli GR501 strain is a cytosine to thymine transition at base 43, which results in a substitution of leucine by phenylalanine at residue 15. The protein product of this gene (LigA251) is accumulated to a similar level at permissive and non-permissive temperatures. Compared to wild-type LigA, at 20 degrees C purified LigA251 has 20-fold lower ligation activity in vitro, and its activity is reduced further at 42 degrees C, resulting in 60-fold lower ligation activity than wild-type LigA. It is proposed that the mutation in LigA251 affects the structure of the N-terminal region of LigA. The resulting decrease in DNA ligase activity at the non-permissive temperature is likely to occur as the result of a conformational change that reduces the rate of adenylation of the ligase.


Assuntos
DNA Ligases , Escherichia coli/enzimologia , Temperatura , Sequência de Aminoácidos , DNA Ligases/química , DNA Ligases/genética , DNA Ligases/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Mutação
6.
Proteins ; 51(3): 321-6, 2003 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-12696044

RESUMO

Sequencing of the genomes of Mycobacterium tuberculosis H37Rv and Streptomyces coelicolor A3(2) identified putative genes for an NAD(+)-dependent DNA ligase. We have cloned both open reading frames and overexpressed the protein products in Escherichia coli. In vitro biochemical assays confirm that each of these proteins encodes a functional DNA ligase that uses NAD(+) as its cofactor. Expression of either protein is able to complement E. coli GR501, which carries a temperature-sensitive mutation in ligA. Thus, in vitro and in vivo analyses confirm predictions that ligA genes from M. tuberculosis and S. coelicolor are NAD(+)-dependent DNA ligases.


Assuntos
DNA Ligases/genética , Mycobacterium tuberculosis/genética , NAD/metabolismo , Streptomyces/genética , Sequência de Aminoácidos , Clonagem Molecular , DNA Ligases/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Mycobacterium tuberculosis/enzimologia , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Homologia de Sequência de Aminoácidos , Streptomyces/enzimologia , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...