Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Space Res (Amst) ; 24: 64-82, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31987481

RESUMO

Human missions to establish surface habitats on the Moon and Mars are planned in the coming decades. Extraplanetary surface habitat life support systems (LSS) will require new capabilities to withstand anticipated unique, harsh conditions. In order to provide safe, habitable environments for the crew, water purification systems that are robust and reliable must be in place. These water purification systems will be required to treat all sources of water in order to achieve the necessary levels of recovery needed to sustain life over the long-duration missions. Current water recovery and purification systems aboard the International Space Station (ISS) are only partially closed, requiring external inputs and resupply. Furthermore, organic wastes, such as fecal and food wastes, are currently discarded and not recycled. For long-duration missions and habitats, this is not a viable approach. The inability to recycle organic wastes represents a lost opportunity to recover critical elements (e.g., C, H, O, N, P) for subsequent food production, water purification, and atmospheric regeneration. On Earth, a variety of technologies are available to meet terrestrial wastewater treatment needs; however, these systems are rarely completely closed-loop, due to lack of economic drivers, legacy infrastructure, and the (perceived) abundance of resources on Earth. Extraplanetary LSS provides a game-changing opportunity to incentivize the development of completely closed-loop systems. Candidate technologies may be biological, physical, or chemical, with associated advantages and disadvantages. This paper presents a survey of potential technologies, along with their inputs, outputs and requirements, which may be suitable for next-generation regenerative water purification in space. With this information, particular technologies can be down-selected for subsystem integration testing and optimization. In order for future space colonies to have closed-loop systems which minimize consumable inputs and maximize recovery, strategic implementation of a variety of complementary subsystems is needed.


Assuntos
Meio Ambiente Extraterreno , Voo Espacial , Purificação da Água/métodos , Destilação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...