Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant Genome ; 14(1): e20082, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33595199

RESUMO

Stripe rust, or yellow rust (Puccinia striiformis Westend. f. sp. tritic), is a disease of wheat (Triticum aestivum L.) historically causing significant economic losses in cooler growing regions. Novel isolates of stripe rust with increased tolerance for high temperatures were detected in the United States circa 2000. This increased heat tolerance puts geographic regions, such as the soft red winter wheat (SRWW) growing region of the southeastern United States, at greater risk of stripe rust induced losses. In order to identify sources of stripe rust resistance in contemporary germplasm, we conducted genome-wide association (GWA) studies on stripe rust severity measured in two panels. The first consisted of 273 older varieties, landraces, and some modern elite breeding lines and was evaluated in environments in the U.S. Pacific Northwest and the southeastern United States. The second panel consisted of 588 modern, elite SRWW breeding lines and was evaluated in four environments in Arkansas and Georgia. The analyses identified three major resistance loci on chromosomes: 2AS (presumably the 2NS:2AS alien introgression from Aegilops ventricosa Tausch; syn. Ae. caudata L.), 3BS, and 4BL. The 4BL locus explained a greater portion of variance in resistance than either the 2AS or 3BS loci in southeastern environments. However, its effects were unstable across different environments and sets of germplasm, possibly a result of its involvement in epistatic interactions. Relatively few lines carry resistance alleles at all three loci, suggesting that there is a pre-existing reservoir of enhanced stripe rust resistance that may be further exploited by regional breeding programs.


Assuntos
Resistência à Doença , Triticum , Mapeamento Cromossômico , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/genética , Estados Unidos
3.
Plant Genome ; 10(2)2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28724061

RESUMO

Genome-wide association mapping is a powerful tool for dissecting the relationship between phenotypes and genetic variants in diverse populations. With the improved cost efficiency of high-throughput genotyping platforms, association mapping is a desirable method of mining populations for favorable alleles that hold value for crop improvement. Stem rust, caused by the fungus f. sp. is a devastating disease that threatens wheat ( L.) production worldwide. Here, we explored the genetic basis of stem rust resistance in a global collection of 1411 hexaploid winter wheat accessions genotyped with 5390 single nucleotide polymorphism markers. To facilitate the development of resistant varieties, we characterized marker-trait associations underlying field resistance to North American races and seedling resistance to the races TTKSK (Ug99), TRTTF, TTTTF, and BCCBC. After evaluating several commonly used linear models, a multi-locus mixed model provided the maximum statistical power and improved the identification of loci with direct breeding application. Ten high-confidence resistance loci were identified, including SNP markers linked to and and at least three newly discovered resistance loci that are strong candidates for introgression into modern cultivars. In the present study, we assessed the power of multi-locus association mapping while providing an in-depth analysis for its practical ability to assist breeders with the introgression of rare alleles into elite varieties.


Assuntos
Basidiomycota/patogenicidade , Estações do Ano , Triticum/genética , Triticum/microbiologia , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Triticum/imunologia
4.
PLoS One ; 12(6): e0179087, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28591221

RESUMO

Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici Erikss. (Pst) remains one of the most significant diseases of wheat worldwide. We investigated stripe rust resistance by genome-wide association analysis (GWAS) in 959 spring wheat accessions from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection, representing major global production environments. The panel was characterized for field resistance in multi-environment field trials and seedling resistance under greenhouse conditions. A genome-wide set of 5,619 informative SNP markers were used to examine the population structure, linkage disequilibrium and marker-trait associations in the germplasm panel. Based on model-based analysis of population structure and hierarchical Ward clustering algorithm, the accessions were clustered into two major subgroups. These subgroups were largely separated according to geographic origin and improvement status of the accessions. A significant correlation was observed between the population sub-clusters and response to stripe rust infection. We identified 11 and 7 genomic regions with significant associations with stripe rust resistance at adult plant and seedling stages, respectively, based on a false discovery rate multiple correction method. The regions harboring all, except three, of the QTL identified from the field and greenhouse studies overlap with positions of previously reported QTL. Further work should aim at validating the identified QTL using proper germplasm and populations to enhance their utility in marker assisted breeding.


Assuntos
Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Doenças das Plantas/genética , Triticum/genética , Basidiomycota/genética , Basidiomycota/patogenicidade , Cruzamento , Genoma de Planta , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Plântula/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
5.
Theor Appl Genet ; 130(4): 649-667, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28039515

RESUMO

KEY MESSAGE: Genome-wide association analysis in tetraploid wheat revealed novel and diverse loci for seedling and field resistance to stripe rust in elite spring durum wheat accessions from worldwide. Improving resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major objective for wheat breeding. To identify effective stripe rust resistance loci, a genome-wide association study (GWAS) was conducted using 232 elite durum wheat (Triticum turgidum ssp. durum) lines from worldwide breeding programs. Genotyping with the 90 K iSelect wheat single nucleotide polymorphism (SNP) array resulted in 11,635 markers distributed across the genome. Response to stripe rust infection at the seedling stage revealed resistant and susceptible accessions present in rather balanced frequencies for the six tested races, with a higher frequency of susceptible responses to United States races as compared to Italian races (61.1 vs. 43.1% of susceptible accessions). Resistance at the seedling stage only partially explained adult plant resistance, which was found to be more frequent with 67.7% of accessions resistant across six nurseries in the United States. GWAS identified 82 loci associated with seedling stripe rust resistance, five of which were significant at the false discovery rate adjusted P value <0.1 and 11 loci were detected for the field response at the adult plant stages in at least two environments. Notably, Yrdurum-1BS.1 showed the largest effect for both seedling and field resistance, and is therefore considered as a major locus for resistance in tetraploid wheat. Our GWAS study is the first of its kind for stripe rust resistance in tetraploid wheat and provides an overview of resistance in elite germplasm and reports new loci that can be used in breeding resistant cultivars.


Assuntos
Basidiomycota , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Teorema de Bayes , Mapeamento Cromossômico , Análise por Conglomerados , DNA de Plantas/genética , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Plântula/genética , Plântula/microbiologia , Tetraploidia , Triticum/microbiologia
6.
Plant Genome ; 10(3)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29293811

RESUMO

Harnessing diversity from germplasm collections is more feasible today because of the development of lower-cost and higher-throughput genotyping methods. However, the cost of phenotyping is still generally high, so efficient methods of sampling and exploiting useful diversity are needed. Genomic selection (GS) has the potential to enhance the use of desirable genetic variation in germplasm collections through predicting the genomic estimated breeding values (GEBVs) for all traits that have been measured. Here, we evaluated the effects of various scenarios of population genetic properties and marker density on the accuracy of GEBVs in the context of applying GS for wheat ( L.) germplasm use. Empirical data for adult plant resistance to stripe rust ( f. sp. ) collected on 1163 spring wheat accessions and genotypic data based on the wheat 9K single nucleotide polymorphism (SNP) iSelect assay were used for various genomic prediction tests. Unsurprisingly, the results of the cross-validation tests demonstrated that prediction accuracy increased with an increase in training population size and marker density. It was evident that using all the available markers (5619) was unnecessary for capturing the trait variation in the germplasm collection, with no further gain in prediction accuracy beyond 1 SNP per 3.2 cM (∼1850 markers), which is close to the linkage disequilibrium decay rate in this population. Collectively, our results suggest that larger germplasm collections may be efficiently sampled via lower-density genotyping methods, whereas genetic relationships between the training and validation populations remain critical when exploiting GS to select from germplasm collections.


Assuntos
Basidiomycota/patogenicidade , Variação Genética , Genoma de Planta , Triticum/genética , Triticum/microbiologia , Interação Gene-Ambiente , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
7.
Theor Appl Genet ; 130(2): 345-361, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27807611

RESUMO

KEY MESSAGE: We identified 15 potentially novel loci in addition to previously characterized leaf rust resistance genes from 1032 spring wheat accessions. Targeted AM subset panels were instrumental in revealing interesting loci. Leaf rust is a common disease of wheat, consistently reducing yields in many wheat-growing regions of the world. Although fungicides are commonly applied to wheat in the United States (US), genetic resistance can provide less expensive, yet effective control of the disease. Our objectives were to map leaf rust resistance genes in a large core collection of spring wheat accessions selected from the United States Department of Agriculture-Agricultural Research Service National Small Grains Collection (NSGC), determine whether previously characterized race-nonspecific resistance genes could be identified with our panel, and evaluate the use of targeted panels to identify seedling and adult plant resistance (APR) genes. Association mapping (AM) detected five potentially novel leaf rust resistance loci on chromosomes 2BL, 4AS, and 5DL at the seedling stage, and 2DL and 7AS that conditioned both seedling and adult plant resistance. In addition, ten potentially novel race-nonspecific resistance loci conditioned field resistance and lacked seedling resistance. Analyses of targeted subsets of the accessions identified additional loci not associated with resistance in the complete core panel. Using molecular markers, we also confirmed the presence and effectiveness of the race-nonspecific genes Lr34, Lr46, and Lr67 in our panel. Although most of the accessions in this study were susceptible to leaf rust in field and seedling tests, many resistance loci were identified with AM. Through the use of targeted subset panels, more loci were identified than in the larger core panels alone.


Assuntos
Mapeamento Cromossômico , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/genética , Basidiomycota , Cromossomos de Plantas , Genes de Plantas , Loci Gênicos , Marcadores Genéticos , Técnicas de Genotipagem , Modelos Lineares , Desequilíbrio de Ligação , Modelos Genéticos , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Triticum/microbiologia
8.
G3 (Bethesda) ; 6(8): 2237-53, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27226168

RESUMO

Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs.


Assuntos
Basidiomycota/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Triticum/microbiologia , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Genótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Banco de Sementes , Triticum/genética , Triticum/crescimento & desenvolvimento
9.
PLoS One ; 10(5): e0126794, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25970329

RESUMO

Winter wheat Druchamp has both high-temperature adult-plant (HTAP) resistance and all-stage resistance to stripe rust caused by Puccinia striiformis f. sp. tritici (Pst). The HTAP resistance in Druchamp is durable as the variety has been resistant in adult-plant stage since it was introduced from France to the United States in late 1940s. To map the quantitative trait loci (QTL) for stripe rust resistance, an F8 recombinant inbred line (RIL) population from cross Druchamp × Michigan Amber was phenotyped for stripe rust response in multiple years in fields under natural infection and with selected Pst races under controlled greenhouse conditions, and genotyped with simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) identified eight HTAP resistance QTL and three all-stage resistance QTL. Among the eight HTAP resistance QTL, QYrdr.wgp-1BL.2 (explaining 2.36-31.04% variation), QYrdr.wgp-2BL (2.81-15.65%), QYrdr.wgp-5AL (2.27-17.22%) and QYrdr.wgp-5BL.2 (2.42-15.13%) were significant in all tests; and QYrdr.wgp-1BL.1 (1.94-10.19%), QYrdr.wgp-1DS (2.04-27.24%), QYrdr.wgp-3AL (1.78-13.85%) and QYrdr.wgp-6BL.2 (1.69-33.71%) were significant in some of the tests. The three all-stage resistance QTL, QYrdr.wgp-5BL.1 (5.47-36.04%), QYrdr.wgp-5DL (9.27-11.94%) and QYrdr.wgp-6BL.1 (13.07-20.36%), were detected based on reactions in the seedlings tested with certain Pst races. Among the eleven QTL detected in Druchamp, at least three (QYrdr.wgp-5DL for race-specific all-stage resistance and QYrdr.wgp-3AL and QYrdr.wgp-6BL.2 for race non-specific HTAP resistance) are new. All these QTL, especially those for durable HTAP resistance, and their closely linked molecular markers could be useful for developing wheat cultivars with durable resistance to stripe rust.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/microbiologia , Triticum/genética , Basidiomycota/fisiologia , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas , Hibridização Genética , Repetições de Microssatélites , Doenças das Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Triticum/microbiologia
10.
G3 (Bethesda) ; 5(3): 449-65, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25609748

RESUMO

New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Genoma de Planta , Triticum/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Poliploidia , Locos de Características Quantitativas , Triticum/imunologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...