Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Integr Bioinform ; 12(2): 259, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26528557

RESUMO

This document specifies CellML 1.1, an XML-based language for describing and exchanging models of cellular and subcellular processes. MathML embedded in CellML documents is used to define the underlying mathematics of models. Models consist of a network of reusable components, each with variables and equations manipulating those variables. Models may import other models to create systems of increasing complexity. Metadata may be embedded in CellML documents using RDF.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Conjuntos de Dados como Assunto/normas , Documentação/normas , Modelos Biológicos , Linguagens de Programação , Biologia de Sistemas/normas , Animais , Guias como Assunto/normas , Humanos , Armazenamento e Recuperação da Informação/normas , Internacionalidade
2.
Math Biosci ; 198(2): 169-89, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16140344

RESUMO

A generalized finite difference (GFD) method is presented that can be used to solve the bi-domain equations modeling cardiac electrical activity. Classical finite difference methods have been applied by many researchers to the bi-domain equations. However, these methods suffer from the limitation of requiring computational meshes that are structured and orthogonal. Finite element or finite volume methods enable the bi-domain equations to be solved on unstructured meshes, although implementations of such methods do not always cater for meshes with varying element topology. The GFD method solves the bi-domain equations on arbitrary and irregular computational meshes without any need to specify element basis functions. The method is useful as it can be easily applied to activation problems using existing meshes that have originally been created for use by finite element or finite difference methods. In addition, the GFD method employs an innovative approach to enforcing nodal and non-nodal boundary conditions. The GFD method performs effectively for a range of two and three-dimensional test problems and when computing bi-domain electrical activation moving through a fully anisotropic three-dimensional model of canine ventricles.


Assuntos
Modelos Cardiovasculares , Algoritmos , Animais , Cães , Eletrofisiologia , Análise de Elementos Finitos , Ventrículos do Coração/anatomia & histologia , Matemática , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...