Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38927895

RESUMO

The introduction of anti-programmed cell death protein-1 (anti-PD-1) to the clinical management of triple-negative breast cancer (TNBC) represents a breakthrough for a disease whose treatment has long relied on the standards of chemotherapy and surgery. Nevertheless, few TNBC patients achieve a durable remission in response to anti-PD-1, and there is a need to develop strategies to maximize the potential benefit of immune checkpoint inhibition (ICI) for TNBC patients. In the present review, we discuss three conceptual strategies to improve ICI response rates in TNBC patients. The first effort involves improving patient selection. We discuss proposed biomarkers of response and resistance to anti-PD-1, concluding that an optimal biomarker will likely be multifaceted. The second effort involves identifying existing targeted therapies or chemotherapies that may synergize with ICI. In particular, we describe recent efforts to use inhibitors of the PI3K/AKT or RAS/MAPK/ERK pathways in combination with ICI. Third, considering the possibility that targeting the PD-1 axis is not the most promising strategy for TNBC treatment, we describe ongoing efforts to identify novel immunotherapy strategies.

2.
Cancer Lett ; 586: 216681, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38311054

RESUMO

Triple-negative breast cancer (TNBC) is a heterogeneous and challenging-to-treat breast cancer subtype. The clinical introduction of immune checkpoint inhibitors (ICI) for TNBC has had mixed results, and very few patients achieved a durable response. The PI3K/AKT pathway is frequently mutated in breast cancer. Given the important roles of the PI3K pathway in immune and tumor cell signaling, there is an interest in using inhibitors of this pathway to increase the response to ICI. This study sought to determine if AKT inhibition could enhance the response to ICI in murine TNBC models. We further sought to understand underlying mechanisms of response or non-response to AKT inhibition in combination with ICI. Using four murine TNBC-like cell lines and corresponding orthotopic mouse tumor models, we found that hyperactivity of the PI3K pathway, as evidenced by levels of phospho-AKT rather than PI3K pathway mutational status, was associated with response to AKT inhibition alone and in combination with ICI. Additional mutations in other growth regulatory pathways could override the response of PI3K pathway mutant tumors to AKT inhibition. Furthermore, we observed that AKT inhibition enhanced the response to ICI in an already sensitive model. However, AKT inhibition failed to convert ICI-resistant tumors, to responsive tumors. These findings suggest that analysis of both the mutational status and phospho-AKT protein levels may be beneficial in predicting which TNBC tumors will respond to AKT inhibition in combination with ICI.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Linhagem Celular Tumoral
3.
BMC Cancer ; 22(1): 497, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513776

RESUMO

BACKGROUND: Current cancer immunotherapies have made tremendous impacts but generally lack high response rates, especially in ovarian cancer. New therapies are needed to provide increased benefits. One understudied approach is to target the large population of immunosuppressive tumor-associated macrophages (TAMs). Using inducible transgenic mice, we recently reported that upregulating nuclear factor-kappaB (NF-κB) signaling in TAMs promotes the M1, anti-tumor phenotype and limits ovarian cancer progression. We also developed a mannose-decorated polymeric nanoparticle system (MnNPs) to preferentially deliver siRNA payloads to M2, pro-tumor macrophages in vitro. In this study, we tested a translational strategy to repolarize ovarian TAMs via MnNPs loaded with siRNA targeting the inhibitor of NF-κB alpha (IκBα) using mouse models of ovarian cancer. METHODS: We evaluated treatment with MnNPs loaded with IκBα siRNA (IκBα-MnNPs) or scrambled siRNA in syngeneic ovarian cancer models. ID8 tumors in C57Bl/6 mice were used to evaluate consecutive-day treatment of late-stage disease while TBR5 tumors in FVB mice were used to evaluate repetitive treatments in a faster-developing disease model. MnNPs were evaluated for biodistribution and therapeutic efficacy in both models. RESULTS: Stimulation of NF-κB activity and repolarization to an M1 phenotype via IκBα-MnNP treatment was confirmed using cultured luciferase-reporter macrophages. Delivery of MnNPs with fluorescent payloads (Cy5-MnNPs) to macrophages in the solid tumors and ascites was confirmed in both tumor models. A three consecutive-day treatment of IκBα-MnNPs in the ID8 model validated a shift towards M1 macrophage polarization in vivo. A clear therapeutic effect was observed with biweekly treatments over 2-3 weeks in the TBR5 model where significantly reduced tumor burden was accompanied by changes in immune cell composition, indicative of reduced immunosuppressive tumor microenvironment. No evidence of toxicity associated with MnNP treatment was observed in either model. CONCLUSIONS: In mouse models of ovarian cancer, MnNPs were preferentially associated with macrophages in ascites fluid and solid tumors. Evidence of macrophage repolarization, increased inflammatory cues, and reduced tumor burden in IκBα-MnNP-treated mice indicate beneficial outcomes in models of established disease. We have provided evidence of a targeted, TAM-directed approach to increase anti-tumor immunity in ovarian cancer with strong translational potential for future clinical studies.


Assuntos
Nanopartículas , Neoplasias Ovarianas , Animais , Ascite , Carcinoma Epitelial do Ovário , Modelos Animais de Doenças , Feminino , Humanos , Manose/farmacologia , Manose/uso terapêutico , Camundongos , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , RNA Interferente Pequeno/farmacologia , Distribuição Tecidual , Microambiente Tumoral
4.
PLoS One ; 12(11): e0188804, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29186206

RESUMO

Helicobacter pylori is a genetically diverse bacterial species that colonizes the stomach in about half of the human population. Most persons colonized by H. pylori remain asymptomatic, but the presence of this organism is a risk factor for gastric cancer. Multiple populations and subpopulations of H. pylori with distinct geographic distributions are recognized. Genetic differences among these populations might be a factor underlying geographic variation in gastric cancer incidence. Relatively little is known about the genomic features of African H. pylori strains compared to other populations of strains. In this study, we first analyzed the genomes of H. pylori strains from seven globally distributed populations or subpopulations and identified encoded proteins that exhibited the highest levels of sequence divergence. These included secreted proteins, an LPS glycosyltransferase, fucosyltransferases, proteins involved in molybdopterin biosynthesis, and Clp protease adaptor (ClpS). Among proteins encoded by the cag pathogenicity island, CagA and CagQ exhibited the highest levels of sequence diversity. We then identified proteins in strains of Western African origin (classified as hspWAfrica by MLST analysis) with sequences that were highly divergent compared to those in other populations of strains. These included ATP-dependent Clp protease, ClpS, and proteins of unknown function. Three of the divergent proteins sequences identified in West African strains were characterized by distinct insertions or deletions up to 8 amino acids in length. These polymorphisms in rapidly evolving proteins represent robust genetic signatures for H. pylori strains of West African origin.


Assuntos
Helicobacter pylori/genética , África Ocidental , Sequência de Aminoácidos , Proteínas de Bactérias/química , Genes Bacterianos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...