Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3895, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393275

RESUMO

One of the core questions of quantum physics is how to reconcile the unitary evolution of quantum states, which is information-preserving and time-reversible, with evolution following the second law of thermodynamics, which, in general, is neither. The resolution to this paradox is to recognize that global unitary evolution of a multi-partite quantum state causes the state of local subsystems to evolve towards maximum-entropy states. In this work, we experimentally demonstrate this effect in linear quantum optics by simultaneously showing the convergence of local quantum states to a generalized Gibbs ensemble constituting a maximum-entropy state under precisely controlled conditions, while introducing an efficient certification method to demonstrate that the state retains global purity. Our quantum states are manipulated by a programmable integrated quantum photonic processor, which simulates arbitrary non-interacting Hamiltonians, demonstrating the universality of this phenomenon. Our results show the potential of photonic devices for quantum simulations involving non-Gaussian states.


Assuntos
Fótons , Física , Termodinâmica , Entropia , Simulação por Computador
2.
Opt Express ; 28(6): 8646-8657, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225485

RESUMO

Electro-optic modulators within Mach-Zehnder interferometers are a common construction for optical switches in integrated photonics. A challenge faced when operating at high switching speeds is that noise from the electronic drive signals will effect switching performance. Inspired by the Mach-Zehnder lattice switching devices of Van Campenhout et al. [Opt. Express17(26), 23793 (2009).] and techniques from the field of Nuclear Magnetic Resonance known as composite pulses, we present switches which offer protection against drive-noise in both the on and off state of the switch for both the phase and intensity information encoded in the switched optical mode.

3.
Phys Rev Lett ; 124(1): 013605, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976720

RESUMO

The representation of quantum states via phase-space functions constitutes an intuitive technique to characterize light. However, the reconstruction of such distributions is challenging as it demands specific types of detectors and detailed models thereof to account for their particular properties and imperfections. To overcome these obstacles, we derive and implement a measurement scheme that enables a reconstruction of phase-space distributions for arbitrary states whose functionality does not depend on the knowledge of the detectors, thus defining the notion of detector-agnostic phase-space distributions. Our theory presents a generalization of well-known phase-space quasiprobability distributions, such as the Wigner function. We implement our measurement protocol, using state-of-the-art transition-edge sensors without performing a detector characterization. Based on our approach, we reveal the characteristic features of heralded single- and two-photon states in phase space and certify their nonclassicality with high statistical significance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...