Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(6): 3186-3198, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38441170

RESUMO

The modern diet delivers nearly equal amounts of carbohydrates and protein into the colon representing an important protein increase compared to past higher fiber diets. At the same time, plant-based protein foods have become increasingly popular, and these sources of protein are generally less digestible than animal protein sources. As a result, a significant amount of protein is expected to reach the colon and be available for fermentation by gut microbiota. While studies on diet-microbiota interventions have mainly focused on carbohydrate fermentation, limited attention has been given to the role of protein or protein-fiber mixtures as fermentation substrates for the colonic microbiota. In this study, we aimed to investigate: (1) how changing the ratio of protein to fiber substrates affects the types and quantities of gut microbial metabolites and bacteria; and (2) how the specific fermentation characteristics of different types of fiber might influence the utilization of protein by gut microbes to produce beneficial short chain fatty acids. Our results revealed that protein fermentation in the gut plays a crucial role in shaping the overall composition of microbiota communities and their metabolic outputs. Surprisingly, butyrate production was maintained or increased when fiber and protein were combined, and even when pure protein samples were used as substrates. These findings suggest that indigestible protein in fiber-rich substrates may promote the production of microbial butyrate perhaps including the later stages of fermentation in the large intestine.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Fibras na Dieta/análise , Butiratos/metabolismo , Fermentação , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia
2.
Food Res Int ; 176: 113858, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163737

RESUMO

Heavy metal exposure is a growing concern due to its adverse effects on human health, including the disruption of gut microbiota composition and function. Dietary fibers have been shown to positively impact the gut microbiota and could mitigate some of the heavy metal negative effects. This study aimed to investigate the effects of different heavy metals (As, Cd and Hg in different concentrations) on gut microbiota in the presence and absence of different dietary fibers that included fructooligosaccharides, pectin, resistant starch, and wheat bran. We observed that whereas heavy metals impaired fiber fermentation outcomes for some fiber types, the presence of fibers generally protected gut microbial communities from heavy metal-induced changes, especially for As and Cd. Notably, the protective effects varied depending on fiber types, and heavy metal type and concentration and were overall stronger for wheat bran and pectin than other fiber types. Our findings suggest that dietary fibers play a role in mitigating the adverse effects of heavy metal exposure on gut microbiota health and may have implications for the development of dietary interventions to reduce dysbiosis associated with heavy metal exposure. Moreover, fiber-type specific outcomes highlight the importance of evidence-based selection of prebiotic dietary fibers to mitigate heavy metal toxicity to the gut microbiota.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Humanos , Fibras na Dieta/análise , Cádmio , Fezes/química , Pectinas/farmacologia
3.
Sci Rep ; 13(1): 1884, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732599

RESUMO

Insoluble plant cell walls are a main source of dietary fiber. Both chemical and physical fiber structures create distinct niches for gut bacterial utilization. Here, we have taken key fermentable solubilized polysaccharides of plant cell walls and fabricated them back into cell wall-like film forms to understand how fiber physical structure directs gut bacterial fermentation outcomes. Solubilized corn bran arabinoxylan (Cax), extracted to retain some ferulate residues, was covalently linked using laccase to form an insoluble cell wall-like film (Cax-F) that was further embedded with pectin (CaxP-F). In vitro fecal fermentation using gut microbiota from three donors was performed on the films and soluble fibers. Depending on the donor, CaxP-F led to higher relative abundance of recognized beneficial bacteria and/or butyrate producers-Akkermansia, Bifidobacterium, Eubacterium halii, unassigned Lachnospiraceae, Blautia, and Anaerostipes-than free pectin and Cax, and Cax-F. Thus, physical form and location of fibers within cell walls form niches for some health-related gut bacteria. This work brings a new understanding of the importance of insoluble cell wall-associated fibers and shows that targeted fiber materials can be fabricated to support important gut microbiota taxa and metabolites of health significance.


Assuntos
Microbioma Gastrointestinal , Fibras na Dieta/metabolismo , Butiratos/metabolismo , Bactérias , Fezes/microbiologia , Fermentação , Pectinas/metabolismo , Ecossistema
4.
mBio ; 12(3): e0102821, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182773

RESUMO

Most dietary fibers used to shape the gut microbiota present different and unpredictable responses, presumably due to the diverse microbial communities of people. Recently, we proposed that fibers can be classified in a hierarchical way where fibers of high specificity (i.e., structurally complex and utilized by a narrow group of gut bacteria) could have more similar interindividual responses than those of low specificity (i.e., structurally simple and utilized by many gut bacteria). To test this hypothesis, we evaluated microbiota fermentation of fibers tentatively classified as low (fructooligosaccharides), low-to-intermediate (type 2 resistant starch), intermediate (pectin), and high (insoluble ß-1,3-glucan) specificity, utilizing fecal inoculum from distinct subjects, regarding interindividual similarity/dissimilarity in fiber responses. Individual shifts in target bacteria (as determined by linear discriminant analysis) confirmed that divergent fiber responses occur when utilizing both of the low-specificity dietary fibers, but fibers of intermediate and high specificity lead to more similar responses across subjects in support of targeted bacteria. The high-specificity insoluble ß-glucan promoted a large increase of the target bacteria (from 0.3 to 16.5% average for Anaerostipes sp. and 2.5 to 17.9% average for Bacteroides uniformis), which were associated with increases in ratios of related metabolites (butyrate and propionate, respectively) in every microbial community in which these bacteria were present. Also, high-specificity dietary fibers promoted more dramatic changes in microbial community structure than low-specificity ones relative to the initial microbial communities. IMPORTANCE In the face of interindividual variability and complexity of gut microbial communities, prediction of outcomes from a given fiber utilized by many microbes would require a sophisticated comprehension of all competitive interactions that occur in the gut. Results presented here suggest that high-specificity fibers potentially circumvent the competitive scope in the gut for fiber utilization, providing a promising path to targeted and predictable microbial shifts in different individuals. These findings are the first to indicate that fiber specificity is related to similarity and intensity of response in distinct human gut microbiota communities.


Assuntos
Bactérias/metabolismo , Fibras na Dieta/análise , Fibras na Dieta/metabolismo , Fermentação , Microbioma Gastrointestinal/fisiologia , Adulto , Bactérias/classificação , Butiratos/metabolismo , Carboidratos/análise , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Voluntários Saudáveis , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...