Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 145(5): 787-99, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21620140

RESUMO

Elucidation of endogenous cellular protein-protein interactions and their networks is most desirable for biological studies. Here we report our study of endogenous human coregulator protein complex networks obtained from integrative mass spectrometry-based analysis of 3290 affinity purifications. By preserving weak protein interactions during complex isolation and utilizing high levels of reciprocity in the large dataset, we identified many unreported protein associations, such as a transcriptional network formed by ZMYND8, ZNF687, and ZNF592. Furthermore, our work revealed a tiered interplay within networks that share common proteins, providing a conceptual organization of a cellular proteome composed of minimal endogenous modules (MEMOs), complex isoforms (uniCOREs), and regulatory complex-complex interaction networks (CCIs). This resource will effectively fill a void in linking correlative genomic studies with an understanding of transcriptional regulatory protein functions within the proteome for formulation and testing of future hypotheses.


Assuntos
Proteínas/metabolismo , Proteoma/análise , Sequência de Aminoácidos , Proteína BRCA1/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Imunoprecipitação , Espectrometria de Massas , Dados de Sequência Molecular , Mapeamento de Interação de Proteínas , Receptores Citoplasmáticos e Nucleares/metabolismo , Transcrição Gênica
2.
Biochemistry ; 50(3): 313-28, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21141906

RESUMO

Transcription of eukaryotic cell is a multistep process tightly controlled by concerted action of macromolecules. Nuclear receptors are ligand-activated sequence-specific transcription factors that bind DNA and activate (or repress) transcription of specific sets of nuclear target genes. Successful activation of transcription by nuclear receptors and most other transcription factors requires "coregulators" of transcription. Coregulators make up a diverse family of proteins that physically interact with and modulate the activity of transcription factors and other components of the gene expression machinery via multiple biochemical mechanisms. The coregulators include coactivators that accomplish reactions required for activation of transcription and corepressors that suppress transcription. This review summarizes our current knowledge of nuclear receptor coactivators with an emphasis on their biochemical mechanisms of action and means of regulation.


Assuntos
Coativadores de Receptor Nuclear/química , Coativadores de Receptor Nuclear/metabolismo , Animais , Regulação da Expressão Gênica/fisiologia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Coativadores de Receptor Nuclear/classificação , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/metabolismo , Transativadores/metabolismo
3.
Proc Natl Acad Sci U S A ; 107(6): 2431-6, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133760

RESUMO

Immunoprecipitation followed by mass spectrometry (IP/MS) has recently emerged as a preferred method in the analysis of protein complex components and cellular protein networks. Targeting endogenous protein complexes of higher eukaryotes, particularly in large-scale efforts, has been challenging due to cellular heterogeneity, high proteome complexity, and, compared to lower organisms, lack of efficient in-locus epitope-tagging techniques. It is further complicated by variability in nonspecific identifications and cross-reactivity of primary antibodies. Still, the study of endogenous human protein networks is highly desired despite its challenges. Here we describe a streamlined IP/MS protocol for the purification and identification of extended endogenous protein complexes. We investigate the sources of nonspecific protein binding and develop semiquantitative specificity filters that are based on peptide spectral count measurements. We also outline logical constraints for the derivation of accurate complex composition from IP/MS data and demonstrate the effectiveness of this approach by presenting our analyses of different transcriptional coregulator complexes. We show consistent purification of novel components for the Integrator complex, analyze the composition of the Mediator complex solely from our data to demonstrate the wide usability of spectral counts, and deconvolute heterogeneous HDAC1/2 networks into core complex modules and several novel subcomplex interactions.


Assuntos
Imunoprecipitação/métodos , Espectrometria de Massas/métodos , Complexos Multiproteicos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Células HeLa , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica , Proteínas/metabolismo
4.
Mol Endocrinol ; 24(4): 859-72, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20181721

RESUMO

The nuclear receptor and bona fide oncogene, steroid receptor coactivator-3 (SRC-3, AIB1), acts as a master transcriptional regulator of breast cancer by transducing growth signals via the estrogen receptor alpha (ER). In this resource paper, we present the genome-wide localization analysis of SRC-3 chromatin affinity sites in MCF-7 human breast cancer chromatin and compare the cis binding sites to global cartographies for ER and FoxA1. By correlating their gene proximal binding sites to integrated gene expression signatures, and in combination with gene ontology analyses, we provide a functional classification of estradiol-induced gene regulation that further highlights an intricate transcriptional control of interdependent cellular pathways by SRC-3. Furthermore, by presenting proteomics analyses of in vivo SRC-3- and ER-associated proteins, we give strong evidence to support the idea that the interpretative power of SRC-3 in estrogen signaling is mediated through the formation of distinct, cell state-dependent protein complexes. Altogether, we present the first approach in complementary comparative analyses that converges results obtained by three discovery-driven methods (cistromics, transcriptomics, and proteomics) into testable hypotheses, thus providing a valuable resource for follow-up studies that further our understanding of estrogen signaling in human diseases in general and breast cancer in particular.


Assuntos
Neoplasias da Mama/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Sítios de Ligação/genética , Western Blotting , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Genoma Humano/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Reação em Cadeia da Polimerase , Interferência de RNA , RNA Polimerase II/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
EMBO J ; 25(13): 3144-55, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16810322

RESUMO

Most serpins are associated with protease inhibition, and their ability to form loop-sheet polymers is linked to conformational disease and the human serpinopathies. Here we describe the structural and functional dissection of how a unique serpin, the non-histone architectural protein, MENT (Myeloid and Erythroid Nuclear Termination stage-specific protein), participates in DNA and chromatin condensation. Our data suggest that MENT contains at least two distinct DNA-binding sites, consistent with its simultaneous binding to the two closely juxtaposed linker DNA segments on a nucleosome. Remarkably, our studies suggest that the reactive centre loop, a region of the MENT molecule essential for chromatin bridging in vivo and in vitro, is able to mediate formation of a loop-sheet oligomer. These data provide mechanistic insight into chromatin compaction by a non-histone architectural protein and suggest how the structural plasticity of serpins has adapted to mediate physiological, rather than pathogenic, loop-sheet linkages.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/química , Modelos Moleculares , Serpinas/química , Animais , Sítios de Ligação , Catepsina L , Catepsinas/química , Cristalografia por Raios X , Cisteína Endopeptidases/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Mutação , Nucleossomos/metabolismo , Conformação Proteica , Serpinas/genética , Serpinas/metabolismo
6.
Mol Cell Biol ; 26(11): 4172-84, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16705169

RESUMO

Posttranslational histone modifications and histone variants form a unique epigenetic landscape on mammalian chromosomes where the principal epigenetic heterochromatin markers, trimethylated histone H3(K9) and the histone H2A.Z, are inversely localized in relation to each other. Trimethylated H3(K9) marks pericentromeric constitutive heterochromatin and the male Y chromosome, while H2A.Z is dramatically reduced at these chromosomal locations. Inactivation of a lysosomal and nuclear protease, cathepsin L, causes a global redistribution of epigenetic markers. In cathepsin L knockout cells, the levels of trimethylated H3(K9) decrease dramatically, concomitant with its relocation away from heterochromatin, and H2A.Z becomes enriched at pericentromeric heterochromatin and the Y chromosome. This change is also associated with global relocation of heterochromatin protein HP1 and histone H3 methyltransferase Suv39h1 away from constitutive heterochromatin; however, it does not affect DNA methylation or chromosome segregation, phenotypes commonly associated with impaired histone H3(K9) methylation. Therefore, the key constitutive heterochromatin determinants can dynamically redistribute depending on physiological context but still maintain the essential function(s) of chromosomes. Thus, our data show that cathepsin L stabilizes epigenetic heterochromatin markers on pericentromeric heterochromatin and the Y chromosome through a novel mechanism that does not involve DNA methylation or affect heterochromatin structure and operates on both somatic and sex chromosomes.


Assuntos
Catepsinas/metabolismo , Centrômero/genética , Cisteína Endopeptidases/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Termodinâmica , Cromossomo Y/metabolismo , Animais , Catepsina L , Catepsinas/antagonistas & inibidores , Catepsinas/deficiência , Núcleo Celular/metabolismo , Cromatina/genética , Segregação de Cromossomos/genética , Cromossomos de Mamíferos/genética , Cisteína Endopeptidases/deficiência , Metilação de DNA , Epigênese Genética , Fibroblastos/citologia , Expressão Gênica , Marcadores Genéticos , Heterocromatina/genética , Humanos , Lisina/metabolismo , Masculino , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , Células NIH 3T3 , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Cromossomo Y/genética
7.
Chromosome Res ; 14(1): 53-69, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16506096

RESUMO

All cells that constitute mature tissues in an eukaryotic organism undergo a multistep process of cell differentiation. At the terminal stage of this process, cells either cease to proliferate forever or rest for a very long period of time. During terminal differentiation, most of the genes that are required for cell 'housekeeping' functions, such as proto-oncogenes and other cell-cycle and cell proliferation genes, become stably repressed. At the same time, nuclear chromatin undergoes dramatic morphological and structural changes at the higher-order levels of chromatin organization. These changes involve both constitutively inactive chromosomal regions (constitutive heterochromatin) and the formerly active genes that become silenced and structurally modified to form facultative heterochromatin. Here we approach terminal cell differentiation as a unique system that allows us to combine biochemical, ultrastructural and molecular genetic techniques to study the relationship between the hierarchy of chromatin higher-order structures in the nucleus and its function(s) in dynamic packing of genetic material in a form that remains amenable to regulation of gene activity and other DNA-dependent cellular processes.


Assuntos
Diferenciação Celular , Heterocromatina/química , Nucleossomos/química , Animais , DNA/química , DNA/metabolismo , DNA/ultraestrutura , Previsões , Inativação Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformação de Ácido Nucleico , Nucleossomos/genética , Nucleossomos/ultraestrutura , Conformação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...