Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biometeorol ; 65(2): 291-299, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33068144

RESUMO

Weather ultimately affects avian migration. The significance of meteorological variables is relatively well known for flights of migrants and for departure/landing decisions at stopover sites. Success of migration greatly depends on storage of fat and body mass gain at stopovers; however, the influence of weather on refueling at stopovers is surprisingly poorly studied. We tested the hypothesis that body mass change of European Robins during their migratory stopovers is affected by meteorological factors (air temperature, precipitations, surface wind speed), along with other ecological variables. We used data on body mass change in 9743 individuals (5147in spring and 4587 in the fall) captured and recaptured within the same day on the Courish Spit of the Baltic Sea in 1994-2003. Fuel deposition rate in Robins was positively associated with air temperature and with higher amount of precipitation. Wind speed did not influence the refueling efficiency of our study species. Also, fuel deposition rate of Robins was affected by age (higher in adults than in first-year birds), negatively influenced by the number of conspecifics at stopover, influenced by the progress of the season (negatively in spring and positively in fall), and negatively influenced by initial energy reserves of migrants, when birds in poor energy condition were more likely to gain weight than birds with large fuel stores. This study shows that refueling of Robins on migration stopovers is substantially affected by meteorological factors that should be taken in to account for comprehensive understanding of stopover ecology and migration strategy of songbird migrants.


Assuntos
Migração Animal , Aves Canoras , Animais , Peso Corporal , Humanos , Estações do Ano , Vento
2.
Science ; 370(6517): 712-715, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33154141

RESUMO

The Arctic is entering a new ecological state, with alarming consequences for humanity. Animal-borne sensors offer a window into these changes. Although substantial animal tracking data from the Arctic and subarctic exist, most are difficult to discover and access. Here, we present the new Arctic Animal Movement Archive (AAMA), a growing collection of more than 200 standardized terrestrial and marine animal tracking studies from 1991 to the present. The AAMA supports public data discovery, preserves fundamental baseline data for the future, and facilitates efficient, collaborative data analysis. With AAMA-based case studies, we document climatic influences on the migration phenology of eagles, geographic differences in the adaptive response of caribou reproductive phenology to climate change, and species-specific changes in terrestrial mammal movement rates in response to increasing temperature.


Assuntos
Migração Animal , Monitorização de Parâmetros Ecológicos , Aclimatação , Animais , Arquivos , Regiões Árticas , População
3.
Behav Processes ; 177: 104154, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32479841

RESUMO

Compensation for wind drift in relation to the side-wind velocity and altitude was investigated in Song Thrushes during autumn migration. The birds were recorded at night flying above the prominent leading line of a marine spit which coincided with the general direction of their migration. Among the large size passerine species, Song Thrushes were identified by a combination of five flight characteristics typical only of this species during particular periods of autumn. The thrushes showed different reactions to the crosswinds: complete and partial compensation for the displacement and drift. Under normal visibility, the completeness of compensation depended both on the velocity of the side-wind and altitude. The degree of compensation achieved was reduced with an increase of altitude, regardless of the wind. Under the same wind conditions, the angle of drift (the angle between the track direction and the leading line) increased with altitude, but the number of birds that compensated for drift decreased. On average, at heights below 300 m agl, the thrushes were capable of compensating completely for moderate winds; between 300 and 600 m agl compensation was partial; but above 600 m the birds drifted completely. Birds of the same species flying above the same terrain may demonstrate different reactions to the same crosswind depending on altitude. Meanwhile, flight tracks gradually deviated from the leading line with an increase in altitude, the headings of the birds got closer to the general migratory direction. It is more likely that the birds control displacement using the visual flow regulation principle by the angular velocity of the landmarks below them running aside in relation to their flight direction, which is inversely proportional to the altitude. Low flying thrushes promptly reacted to the shifting of the leading line of the spit with an average angular velocity of more than 0.8°/s perpendicular to the direction of flight and compensated completely for drift. Shifting of the leading line with an angular velocity of less than 0.4°/s, the high flying birds did not seem to notice or did not try to compensate for displacement deliberately.


Assuntos
Aves Canoras , Vento , Altitude , Migração Animal , Animais , Voo Animal
4.
Sci Rep ; 10(1): 7698, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382101

RESUMO

Common cuckoos Cuculus canorus are obligate nest parasites yet young birds reach their distant, species-specific wintering grounds without being able to rely on guidance from experienced conspecifics - in fact they never meet their parents. Naïve marine animals use an inherited navigational map during migration but in inexperienced terrestrial animal migrants unequivocal evidence of navigation is lacking. We present satellite tracking data on common cuckoos experimentally displaced 1,800 km eastward from Rybachy to Kazan. After displacement, both young and adult travelled similarly towards the route of non-displaced control birds. The tracking data demonstrate the potential for young common cuckoos to return to the species-specific migration route after displacement, a response so far reported exclusively in experienced birds. Our results indicate that an inherited map allows first-time migrating cuckoos to locate suitable wintering grounds. This is in contrast to previous studies of solitary terrestrial bird migrants but similar to that reported from the marine environment.


Assuntos
Migração Animal/fisiologia , Aves/fisiologia , Asas de Animais/fisiologia , Animais , Orientação/fisiologia , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...