Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 914: 169879, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38185145

RESUMO

Accounting and reporting of greenhouse gas (GHG) emissions are mandatory for Parties under the Paris Agreement. Emissions reporting is important for understanding the global carbon cycle and for addressing global climate change. However, in a period of open conflict or war, military emissions increase significantly and the accounting system is not currently designed to account adequately for this source. In this paper we analyze how, during the first 18 months of the 2022/2023 full-scale war in Ukraine, GHG national inventory reporting to the UNFCCC was affected. We estimated the decrease of emissions due to a reduction in traditional human activities. We identified major, war-related, emission processes from the territory of Ukraine not covered by current GHG inventory guidelines and that are not likely to be included in national inventory reports. If these emissions are included, they will likely be incorporated in a way that is not transparent with potentially high uncertainty. We analyze publicly available data and use expert judgment to estimate such emissions from (1) the use of bombs, missiles, barrel artillery, and mines; (2) the consumption of oil products for military operations; (3) fires at petroleum storage depots and refineries; (4) fires in buildings and infrastructure facilities; (5) fires on forest and agricultural lands; and (6) the decomposition of war-related garbage/waste. Our estimate of these war-related emissions of carbon dioxide, methane, and nitrous oxide for the first 18 months of the war in Ukraine is 77 MtCO2-eq. with a relative uncertainty of +/-22 % (95 % confidence interval).

2.
Sci Rep ; 13(1): 14954, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737292

RESUMO

Since February 2022, the full-scale war in Ukraine has been strongly affecting society and economy in Ukraine and beyond. Satellite observations are crucial tools to objectively monitor and assess the impacts of the war. We combine satellite-based tropospheric nitrogen dioxide (NO2) and carbon dioxide (CO2) observations to detect and characterize changes in human activities, as both are linked to fossil fuel combustion processes. We show significantly reduced NO2 levels over the major Ukrainian cities, power plants and industrial areas: the NO2 concentrations in the second quarter of 2022 were 15-46% lower than the same quarter during the reference period 2018-2021, which is well below the typical year-to-year variability (5-15%). In the Ukrainian capital Kyiv, the NO2 tropospheric column monthly average in April 2022 was almost 60% smaller than 2019 and 2021, and about 40% smaller than 2020 (the period mostly affected by the COVID-19 restrictions). Such a decrease is consistent with the essential reduction in population and corresponding emissions from the transport and commercial/residential sectors over the major Ukrainian cities. The NO2 reductions observed in the industrial regions of eastern Ukraine reflect the decline in the Ukrainian industrial production during the war (40-50% lower than in 2021), especially from the metallurgic and chemical industry, which also led to a decrease in power demand and corresponding electricity production by thermal power plants (which was 35% lower in 2022 compared to 2021). Satellite observations of land properties and thermal anomalies indicate an anomalous distribution of fire detections along the front line, which are attributable to shelling or other intentional fires, rather than the typical homogeneously distributed fires related to crop harvesting. The results provide timely insights into the impacts of the ongoing war on the Ukrainian society and illustrate how the synergic use of satellite observations from multiple platforms can be useful in monitoring significant societal changes. Satellite-based observations can mitigate the lack of monitoring capability during war and conflicts and enable the fast assessment of sudden changes in air pollutants and other relevant parameters.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Dióxido de Nitrogênio , Ucrânia , Metalurgia , Fatores Socioeconômicos
3.
IOP Conf Ser Mater Sci Eng ; 1(9): 1-14, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32140180

RESUMO

Tracking spatiotemporal changes in GHG emissions is key to successful implementation of the United Nations Framework Convention on Climate Change (UNFCCC). And while emission inventories often provide a robust tool to track emission trends at the country level, subnational emission estimates are often not reported or reports vary in robustness as the estimates are often dependent on the spatial modeling approach and ancillary data used to disaggregate the emission inventories. Assessing the errors and uncertainties of the subnational emission estimates is fundamentally challenging due to the lack of physical measurements at the subnational level. To begin addressing the current performance of modeled gridded CO2 emissions, this study compares two common proxies used to disaggregate CO2 emission estimates. We use a known gridded CO2 model based on satellite-observed nighttime light (NTL) data (Open Source Data Inventory for Anthropogenic CO2, ODIAC) and a gridded population dataset driven by a set of ancillary geospatial data. We examine the association at multiple spatial scales of these two datasets for three countries in Southeast Asia: Vietnam, Cambodia and Laos and characterize the spatiotemporal similarities and differences for 2000, 2005, and 2010. We specifically highlight areas of potential uncertainty in the ODIAC model, which relies on the single use of NTL data for disaggregation of the non-point emissions estimates. Results show, over time, how a NTL-based emissions disaggregation tends to concentrate CO2 estimates in different ways than population-based estimates at the subnational level. We discuss important considerations in the disconnect between the two modeled datasets and argue that the spatial differences between data products can be useful to identify areas affected by the errors and uncertainties associated with the NTL-based downscaling in a region with uneven urbanization rates.

4.
Sci Data ; 5: 180056, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29611843

RESUMO

Knowledge of the spatial distribution of agricultural abandonment following the collapse of the Soviet Union is highly uncertain. To help improve this situation, we have developed a new map of arable and abandoned land for 2010 at a 10 arc-second resolution. We have fused together existing land cover and land use maps at different temporal and spatial scales for the former Soviet Union (fSU) using a training data set collected from visual interpretation of very high resolution (VHR) imagery. We have also collected an independent validation data set to assess the map accuracy. The overall accuracies of the map by region and country, i.e. Caucasus, Belarus, Kazakhstan, Republic of Moldova, Russian Federation and Ukraine, are 90±2%, 84±2%, 92±1%, 78±3%, 95±1%, 83±2%, respectively. This new product can be used for numerous applications including the modelling of biogeochemical cycles, land-use modelling, the assessment of trade-offs between ecosystem services and land-use potentials (e.g., agricultural production), among others.


Assuntos
Agricultura , Mapas como Assunto , U.R.S.S.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...