Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798456

RESUMO

The number and distribution of ovarian follicles in each growth stage provides a reliable readout of ovarian health and function. Leveraging techniques for three-dimensional (3D) imaging of ovaries in toto has the potential to uncover total, accurate ovarian follicle counts. However, because of the size and holistic nature of these images, counting oocytes is time consuming and difficult. The advent of deep-learning algorithms has allowed for the rapid development of ultra-fast, automated methods to analyze microscopy images. In recent years, these pipelines have become more user-friendly and accessible to non-specialists. We used these tools to create OoCount, a high-throughput, open-source method for automatic oocyte segmentation and classification from fluorescent 3D microscopy images of whole mouse ovaries using a deep-learning convolutional neural network (CNN) based approach. We developed a fast tissue-clearing and spinning disk confocal-based imaging protocol to obtain 3D images of whole mount perinatal and adult mouse ovaries. Fluorescently labeled oocytes from 3D images of ovaries were manually annotated in Napari to develop a machine learning training dataset. This dataset was used to retrain StarDist using a CNN within DL4MicEverywhere to automatically label all oocytes in the ovary. In a second phase, we utilize Accelerated Pixel and Object Classification, a Napari plugin, to classify labeled oocytes and sort them into growth stages. Here, we provide an end-to-end protocol for producing high-quality 3D images of the perinatal and adult mouse ovary, obtaining follicle counts and staging. We also demonstrate how to customize OoCount to fit images produced in any lab. Using OoCount, we can obtain accurate counts of oocytes in each growth stage in the perinatal and adult ovary, improving our ability to study ovarian function and fertility. Summary sentence: This protocol introduces OoCount, a high-throughput, open-source method for automatic oocyte segmentation and classification from fluorescent 3D microscopy images of whole mouse ovaries using a machine learning-based approach.

2.
Development ; 150(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36912416

RESUMO

During mammalian development, gonadal sex determination results from the commitment of bipotential supporting cells to Sertoli or granulosa cell fates. Typically, this decision is coordinated across the gonad to ensure commitment to a single organ fate. When unified commitment fails in an XY mouse, an ovotestis forms in which supporting cells in the center of the gonad typically develop as Sertoli cells, while supporting cells in the poles develop as granulosa cells. This central bias for Sertoli cell fate was thought to result from the initial expression of the drivers of Sertoli cell fate, SRY and/or SOX9, in the central domain, followed by paracrine expansion to the poles. However, we show here that the earliest cells expressing SRY and SOX9 are widely distributed across the gonad. In addition, Sertoli cell fate does not spread among supporting cells through paracrine relay. Instead, we uncover a center-biased pattern of supporting cell precursor ingression that occurs in both sexes and results in increased supporting cell density in the central domain. Our findings prompt a new model of gonad patterning in which a density-dependent organizing principle dominates Sertoli cell fate stabilization.


Assuntos
Gônadas , Processos de Determinação Sexual , Feminino , Camundongos , Masculino , Animais , Gônadas/metabolismo , Células de Sertoli/metabolismo , Diferenciação Celular , Desenvolvimento Embrionário , Fatores de Transcrição SOX9/metabolismo , Testículo/metabolismo , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Mamíferos/metabolismo
3.
Elife ; 112022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36165446

RESUMO

Morphogenetic events during the development of the fetal ovary are crucial to the establishment of female fertility. However, the effects of structural rearrangements of the ovary and surrounding reproductive tissues on ovary morphogenesis remain largely uncharacterized. Using tissue clearing and lightsheet microscopy, we found that ovary folding correlated with regionalization into cortex and medulla. Relocation of the oviduct to the ventral aspect of the ovary led to ovary encapsulation, and mutual attachment of the ovary and oviduct to the cranial suspensory ligament likely triggered ovary folding. During this process, the rete ovarii (RO) elaborated into a convoluted tubular structure extending from the ovary into the ovarian capsule. Using genetic mouse models in which the oviduct and RO are perturbed, we found the oviduct is required for ovary encapsulation. This study reveals novel relationships among the ovary and surrounding tissues and paves the way for functional investigation of the relationship between architecture and differentiation of the mammalian ovary.


In humans and other mammals, the female reproductive organs, or ovaries, develop early in life, while the young are still in their mother's womb. Ovaries contain several different compartments, including the ovarian follicles. These are small groups of cells that produce reproductive hormones, and each follicle also has the potential to produce one egg for fertilisation. The ovaries are further surrounded by different tissues that develop alongside them. These include the oviducts, which carry fertilised eggs from the ovaries into the womb, and ligaments, which anchor the ovaries to the wall of the body cavity. During the development of ovaries, ovarian follicles are sorted into two distinct groups. The first, called medullary follicles, are lost before puberty. The second group, or cortical follicles, remain in a state of 'suspended animation' until puberty. After that, they act as a 'reserve' of eggs for the rest of the reproductive lifespan. Once each cortical follicle has produced an egg, it is not replenished. This means that proper follicle sorting is crucial for establishing female fertility, and therefore the ability to conceive. The mechanisms behind follicle sorting, however, are still poorly understood. McKey et al. set out to determine how the ovary's structure changed during its development. In the experiments, high-resolution microscopy techniques were used to reconstruct ovaries of mice in 3D across different stages of development. This revealed that the ends of each ovary started folding towards each other just before birth, and that the folding also happened at the same time as follicle sorting. Simultaneous changes in the shape and orientation of the ligaments suggested that these tissues might direct the folding, for example by pushing or pulling on the rest of the ovary. These results suggest that the changes in ovary structure in early life are critically linked to the establishment of the ovary's egg reserves. McKey et al. hope that this study will pave the way to a better understanding of infertility and, ultimately, better treatments.


Assuntos
Ovário , Oviductos , Humanos , Feminino , Camundongos , Animais , Feto , Morfogênese , Ligamentos , Mamíferos
4.
Sci Adv ; 8(21): eabm0972, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35613264

RESUMO

Gonadal sex determination represents a unique model for studying cell fate decisions. However, a complete understanding of the different cell lineages forming the developing testis and ovary remains elusive. Here, we investigated the origin, specification, and subsequent sex-specific differentiation of a previously uncharacterized population of supporting-like cells (SLCs) in the developing mouse gonads. The SLC lineage is closely related to the coelomic epithelium and specified as early as E10.5, making it the first somatic lineage to be specified in the bipotential gonad. SLC progenitors are localized within the genital ridge at the interface with the mesonephros and initially coexpress Wnt4 and Sox9. SLCs become sexually dimorphic around E12.5, progressively acquire a more Sertoli- or pregranulosa-like identity and contribute to the formation of the rete testis and rete ovarii. Last, we found that WNT4 is a crucial regulator of the SLC lineage and is required for normal development of the rete testis.

5.
Development ; 148(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-33795229

RESUMO

During development of the mouse urogenital complex, the gonads undergo changes in three-dimensional structure, body position and spatial relationship with the mesonephric ducts, kidneys and adrenals. The complexity of genital ridge development obscures potential connections between morphogenesis and gonadal sex determination. To characterize the morphogenic processes implicated in regulating gonad shape and fate, we used whole-embryo tissue clearing and light sheet microscopy to assemble a time course of gonad development in native form and context. Analysis revealed that gonad morphology is determined through anterior-to-posterior patterns as well as increased rates of growth, rotation and separation in the central domain that may contribute to regionalization of the gonad. We report a close alignment of gonad and mesonephric duct movements as well as delayed duct development in a gonad dysgenesis mutant, which together support a mechanical dependency linking gonad and mesonephric duct morphogenesis.


Assuntos
Gônadas/fisiologia , Morfogênese/fisiologia , Ductos Mesonéfricos/fisiologia , Animais , Embrião de Mamíferos/fisiologia , Feminino , Idade Gestacional , Rim/fisiologia , Masculino , Mesonefro/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Diferenciação Sexual/fisiologia
6.
Development ; 146(19)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31253634

RESUMO

The adult spermatogonial stem cell population arises from pluripotent primordial germ cells (PGCs) that enter the fetal testis around embryonic day (E)10.5. PGCs undergo rapid mitotic proliferation, then enter prolonged cell cycle arrest (G1/G0), during which they transition to pro-spermatogonia. In mice homozygous for the Ter mutation in the RNA-binding protein Dnd1 (Dnd1Ter/Ter ), many male germ cells (MGCs) fail to enter G1/G0 and instead form teratomas: tumors containing many embryonic cell types. To investigate the origin of these tumors, we sequenced the MGC transcriptome in Dnd1Ter/Ter mutants at E12.5, E13.5 and E14.5, immediately prior to teratoma formation, and correlated this information with DO-RIP-Seq-identified DND1 direct targets. Consistent with previous results, we found DND1 controls downregulation of many genes associated with pluripotency and active cell cycle, including mTor, Hippo and Bmp/Nodal signaling pathway elements. However, DND1 targets also include genes associated with male differentiation, including a large group of chromatin regulators activated in wild-type but not mutant MGCs during the E13.5 and E14.5 transition. Results suggest multiple DND1 functions and link DND1 to initiation of epigenetic modifications in MGCs.


Assuntos
Reprogramação Celular/genética , Epigênese Genética , Células Germinativas/citologia , Células Germinativas/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Pluripotentes/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Apoptose/genética , Sequência de Bases , Ciclo Celular/genética , Cromatina/metabolismo , Elementos de DNA Transponíveis/genética , Regulação para Baixo/genética , Embrião de Mamíferos/citologia , Feminino , Homozigoto , Masculino , Camundongos , Mutação/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais/genética , Transcrição Gênica , Regulação para Cima/genética
7.
Proc Natl Acad Sci U S A ; 116(12): 5570-5575, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30819894

RESUMO

Testes and ovaries undergo sex-specific morphogenetic changes and adopt strikingly different morphologies, despite the fact that both arise from a common precursor, the bipotential gonad. Previous studies showed that recruitment of vasculature is critical for testis patterning. However, vasculature is not recruited into the early ovary. Peripheral innervation is involved in patterning development of many organs but has been given little attention in gonad development. In this study, we show that while innervation in the male reproductive complex is restricted to the epididymis and vas deferens and never invades the interior of the testis, neural crest-derived innervation invades the interior of the ovary around E16.5. Individual neural crest cells colonize the ovary, differentiate into neurons and glia, and form a dense neural network within the ovarian medulla. Using a sex-reversing mutant mouse line, we show that innervation is specific to ovary development, is not dependent on the genetic sex of gonadal or neural crest cells, and may be blocked by repressive guidance signals elevated in the male pathway. This study reveals another aspect of sexually dimorphic gonad development, establishes a precise timeline and structure of ovarian innervation, and raises many questions for future research.


Assuntos
Gônadas/inervação , Ovário/inervação , Testículo/inervação , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Gônadas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese , Crista Neural/inervação , Neurônios/fisiologia , Ovário/citologia , Caracteres Sexuais , Processos de Determinação Sexual/genética , Processos de Determinação Sexual/fisiologia , Diferenciação Sexual/genética , Testículo/citologia
8.
Curr Top Dev Biol ; 116: 153-65, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26970618

RESUMO

The causal relationship between the cell cycle and cell fate has recently been reconsidered in several developmental systems, now including sex determination. Direct links between cell cycle machinery and developmental factors demonstrate how modulating the cell cycle can have a profound influence on cellular decisions, through phenomena largely divided into phase-specific interactions seen as "priming" and "competence," or global changes in transcription or histone modifications during transitions. This integration challenges the common view of cell fate landscapes.


Assuntos
Ciclo Celular/fisiologia , Processos de Determinação Sexual/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Drosophila/citologia , Olho/citologia , Olho/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino
9.
PLoS One ; 7(6): e38267, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701617

RESUMO

The relationships between hydrothermal vent tubeworms and sulfide-oxidizing bacteria have served as model associations for understanding chemoautotrophy and endosymbiosis. Numerous studies have focused on the physiological and biochemical adaptations that enable these symbioses to sustain some of the highest recorded carbon fixation rates ever measured. However, far fewer studies have explored the molecular mechanisms underlying the regulation of host and symbiont interactions, specifically those mediated by the innate immune system of the host. To that end, we conducted a series of studies where we maintained the tubeworm, Ridgeia piscesae, in high-pressure aquaria and examined global and quantitative changes in gene expression via high-throughput transcriptomics and quantitative real-time PCR (qPCR). We analyzed over 32,000 full-length expressed sequence tags as well as 26 Mb of transcript sequences from the trophosome (the organ that houses the endosymbiotic bacteria) and the plume (the gas exchange organ in contact with the free-living microbial community). R. piscesae maintained under conditions that promote chemoautotrophy expressed a number of putative cell signaling and innate immunity genes, including pattern recognition receptors (PRRs), often associated with recognizing microbe-associated molecular patterns (MAMPs). Eighteen genes involved with innate immunity, cell signaling, cell stress and metabolite exchange were further analyzed using qPCR. PRRs, including five peptidoglycan recognition proteins and a Toll-like receptor, were expressed significantly higher in the trophosome compared to the plume. Although PRRs are often associated with mediating host responses to infection by pathogens, the differences in expression between the plume and trophosome also implicate similar mechanisms of microbial recognition in interactions between the host and symbiont. We posit that regulation of this association involves a molecular "dialogue" between the partners that includes interactions between the host's innate immune system and the symbiont.


Assuntos
Comunicação Celular/genética , Regulação da Expressão Gênica/genética , Imunidade Inata/genética , Poliquetos/genética , Poliquetos/microbiologia , Simbiose/genética , Animais , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Fontes Hidrotermais , Oceano Pacífico , Poliquetos/imunologia , Pressão , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...