RESUMO
Dynamical systems of the billiard type are of fundamental importance for the description of numerous phenomena observed in many different fields of research, including statistical mechanics, Hamiltonian dynamics, nonlinear physics, and many others. This Focus Issue presents the recent progress in this area with contributions from the mathematical as well as physical stand point.
RESUMO
We consider a dissipative oval-like shaped billiard with a periodically moving boundary. The dissipation considered is proportional to a power of the velocity V of the particle. The three specific types of power laws used are: (i) Fâ-V ; (ii) Fâ-V(2) and (iii) Fâ-V(δ) with 1<δ<2 . In the course of the dynamics of the particle, if a large initial velocity is considered, case (i) shows that the decay of the particle's velocity is a linear function of the number of collisions with the boundary. For case (ii), an exponential decay is observed, and for 1<δ<2 , an powerlike decay is observed. Scaling laws were used to characterize a phase transition from limited to unlimited energy gain for cases (ii) and (iii). The critical exponents obtained for the phase transition in the case (ii) are the same as those obtained for the dissipative bouncer model. Therefore near this phase transition, these two rather different models belong to the same class of universality. For all types of dissipation, the results obtained allow us to conclude that suppression of the unlimited energy growth is indeed observed.
RESUMO
We study dynamical properties of an ensemble of noninteracting particles in a time-dependent elliptical-like billiard. It was recently shown [Phys. Rev. Lett. 100, 014103 (2008)] that for the nondissipative dynamics, the particle experiences unlimited energy growth. Here we show that inelastic collisions suppress Fermi acceleration in a driven elliptical-like billiard. This suppression is yet another indication that Fermi acceleration is not a structurally stable phenomenon.