Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(25): 257401, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37418712

RESUMO

We compute the typical number of equilibria of the generalized Lotka-Volterra equations describing species-rich ecosystems with random, nonreciprocal interactions using the replicated Kac-Rice method. We characterize the multiple-equilibria phase by determining the average abundance and similarity between equilibria as a function of their diversity (i.e., of the number of coexisting species) and of the variability of the interactions. We show that linearly unstable equilibria are dominant, and that the typical number of equilibria differs with respect to the average number.


Assuntos
Ecossistema , Modelos Biológicos
2.
Phys Rev Lett ; 130(9): 098401, 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36930904

RESUMO

Models of many-species ecosystems, such as the Lotka-Volterra and replicator equations, suggest that these systems generically exhibit near-extinction processes, where population sizes go very close to zero for some time before rebounding, accompanied by a slowdown of the dynamics (aging). Here, we investigate the connection between near-extinction and aging by introducing an exactly solvable many-variable model, where the time derivative of each population size vanishes at both zero and some finite maximal size. We show that aging emerges generically when random interactions are taken between populations. Population sizes remain exponentially close (in time) to the absorbing values for extended periods of time, with rapid transitions between these two values. The mechanism for aging is different from the one at play in usual glassy systems: At long times, the system evolves in the vicinity of unstable fixed points rather than marginal ones.

3.
Science ; 378(6615): 85-89, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36201585

RESUMO

From tropical forests to gut microbiomes, ecological communities host notably high numbers of coexisting species. Beyond high biodiversity, communities exhibit a range of complex dynamics that are difficult to explain under a unified framework. Using bacterial microcosms, we performed a direct test of theory predicting that simple community-level features dictate emergent behaviors of communities. As either the number of species or the strength of interactions increases, we show that microbial ecosystems transition between three distinct dynamical phases, from a stable equilibrium in which all species coexist to partial coexistence to emergence of persistent fluctuations in species abundances, in the order predicted by theory. Under fixed conditions, high biodiversity and fluctuations reinforce each other. Our results demonstrate predictable emergent patterns of diversity and dynamics in ecological communities.


Assuntos
Bactérias , Biodiversidade , Florestas , Microbiota , Bactérias/genética
4.
PLoS Comput Biol ; 18(7): e1010274, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35816542

RESUMO

Interactions in natural communities can be highly heterogeneous, with any given species interacting appreciably with only some of the others, a situation commonly represented by sparse interaction networks. We study the consequences of sparse competitive interactions, in a theoretical model of a community assembled from a species pool. We find that communities can be in a number of different regimes, depending on the interaction strength. When interactions are strong, the network of coexisting species breaks up into small subgraphs, while for weaker interactions these graphs are larger and more complex, eventually encompassing all species. This process is driven by the emergence of new allowed subgraphs as interaction strength decreases, leading to sharp changes in diversity and other community properties, and at weaker interactions to two distinct collective transitions: a percolation transition, and a transition between having a unique equilibrium and having multiple alternative equilibria. Understanding community structure is thus made up of two parts: first, finding which subgraphs are allowed at a given interaction strength, and secondly, a discrete problem of matching these structures over the entire community. In a shift from the focus of many previous theories, these different regimes can be traversed by modifying the interaction strength alone, without need for heterogeneity in either interaction strengths or the number of competitors per species.


Assuntos
Biota
5.
Phys Rev E ; 104(2-1): 024106, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525629

RESUMO

The survival of natural populations may be greatly affected by environmental conditions that vary in space and time. We look at a population residing in two locations (patches) coupled by migration, in which the local conditions fluctuate in time. We report on two findings. First, we find that, unlike rare events in many other systems, here the histories leading to a rare extinction event are not dominated by a single path. We develop the appropriate framework, which turns out to be a hybrid of the standard saddle-point method, and the Donsker-Varadhan formalism which treats rare events of atypical averages over a long time. It provides a detailed description of the statistics of histories leading to the rare event and the mean time to extinction. The framework applies to rare events in a broad class of systems driven by non-Gaussian noise. Second, applying this framework to the population-dynamics model, we find a phase transition in its extinction behavior. Strikingly, a patch which is a sink (where individuals die more than are born) can nonetheless reduce the probability of extinction, even if it lowers the average population's size and growth rate.

6.
PLoS Comput Biol ; 16(10): e1008189, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33044951

RESUMO

We show how highly-diverse ecological communities may display persistent abundance fluctuations, when interacting through resource competition and subjected to migration from a species pool. These fluctuations appear, robustly and predictably, in certain regimes of parameter space. Their origin is closely tied to the ratio of realized species diversity to the number of resources. This ratio is set by competition, through the balance between species being pushed out and invading. When this ratio is smaller than one, dynamics will reach stable equilibria. When this ratio is larger than one, the competitive exclusion principle dictates that fixed-points are either unstable or marginally stable. If they are unstable, the system is repelled from fixed points, and abundances forever fluctuate. While marginally-stable fixed points are in principle allowed and predicted by some models, they become structurally unstable at high diversity. This means that even small changes to the model, such as non-linearities in how resources combine to generate species' growth, will result in persistent abundance fluctuations.


Assuntos
Biota/fisiologia , Comportamento Competitivo/fisiologia , Modelos Biológicos , Modelos Estatísticos , Biologia de Sistemas
7.
PLoS Comput Biol ; 16(5): e1007827, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32413026

RESUMO

When can ecological interactions drive an entire ecosystem into a persistent non-equilibrium state, where many species populations fluctuate without going to extinction? We show that high-diversity spatially heterogeneous systems can exhibit chaotic dynamics which persist for extremely long times. We develop a theoretical framework, based on dynamical mean-field theory, to quantify the conditions under which these fluctuating states exist, and predict their properties. We uncover parallels with the persistence of externally-perturbed ecosystems, such as the role of perturbation strength, synchrony and correlation time. But uniquely to endogenous fluctuations, these properties arise from the species dynamics themselves, creating feedback loops between perturbation and response. A key result is that fluctuation amplitude and species diversity are tightly linked: in particular, fluctuations enable dramatically more species to coexist than at equilibrium in the very same system. Our findings highlight crucial differences between well-mixed and spatially-extended systems, with implications for experiments and their ability to reproduce natural dynamics. They shed light on the maintenance of biodiversity, and the strength and synchrony of fluctuations observed in natural systems.


Assuntos
Biodiversidade , Ecossistema , Animais , Modelos Biológicos , Dinâmica não Linear
8.
Proc Natl Acad Sci U S A ; 115(9): 2156-2161, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29440487

RESUMO

The study of ecological communities often involves detailed simulations of complex networks. However, our empirical knowledge of these networks is typically incomplete and the space of simulation models and parameters is vast, leaving room for uncertainty in theoretical predictions. Here we show that a large fraction of this space of possibilities exhibits generic behaviors that are robust to modeling choices. We consider a wide array of model features, including interaction types and community structures, known to generate different dynamics for a few species. We combine these features in large simulated communities, and show that equilibrium diversity, functioning, and stability can be predicted analytically using a random model parameterized by a few statistical properties of the community. We give an ecological interpretation of this "disordered" limit where structure fails to emerge from complexity. We also demonstrate that some well-studied interaction patterns remain relevant in large ecosystems, but their impact can be encapsulated in a minimal number of additional parameters. Our approach provides a powerful framework for predicting the outcomes of ecosystem assembly and quantifying the added value of more detailed models and measurements.


Assuntos
Biodiversidade , Variação Genética , Modelos Biológicos , Animais , Simulação por Computador
9.
J Stat Mech ; 20182018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30636966

RESUMO

A central question in ecology is to understand the ecological processes that shape community structure. Niche-based theories have emphasized the important role played by competition for maintaining species diversity. Many of these insights have been derived using MacArthur's consumer resource model (MCRM) or its generalizations. Most theoretical work on the MCRM has focused on small ecosystems with a few species and resources. However theoretical insights derived from small ecosystems many not scale up large ecosystems with many resources and species because large systems with many interacting components often display new emergent behaviors that cannot be understood or deduced from analyzing smaller systems. To address these shortcomings, we develop a statistical physics inspired cavity method to analyze MCRM when both the number of species and the number of resources is large. Unlike previous work in this limit, our theory addresses resource dynamics and resource depletion and demonstrates that species generically and consistently perturb their environments and significantly modify available ecological niches. We show how our cavity approach naturally generalizes niche theory to large ecosystems by accounting for the effect of collective phenomena on species invasion and ecological stability. Our theory suggests that such phenomena are a generic feature of large, natural ecosystems and must be taken into account when analyzing and interpreting community structure. It also highlights the important role that statistical-physics inspired approaches can play in furthering our understanding of ecology.

10.
Phys Rev E ; 95(4-1): 042414, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28505745

RESUMO

Ecological communities in heterogeneous environments assemble through the combined effect of species interaction and migration. Understanding the effect of these processes on the community properties is central to ecology. Here we study these processes for a single community subject to migration from a pool of species, with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions. A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to possess a symmetry that also establishes a connection with other well-known models.


Assuntos
Biota , Modelos Biológicos , Simulação por Computador , Dinâmica Populacional
11.
Phys Rev Lett ; 115(22): 228303, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26650320

RESUMO

Polymers in a melt may be subject to topological constraints, as in the example of unlinked polymer rings. How to do statistical mechanics in the presence of such constraints remains a fundamental open problem. We study the effect of topological constraints on a melt of directed polymers, using simulations of a simple quasi-2D model. We find that fixing the global topology of the melt to be trivial changes the polymer conformations drastically. Polymers of length L wander in the transverse direction only by a distance of order (lnL)^{ζ} with ζ≃1.5. This is strongly suppressed in comparison with the Brownian L^{1/2} scaling which holds in the absence of the topological constraint. It is also much smaller than the predictions of standard heuristic approaches-in particular the L^{1/4} of a mean-field-like "array of obstacles" model-so our results present a sharp challenge to theory. Dynamics are also strongly affected by the constraints, and a tagged monomer in an infinite system performs logarithmically slow subdiffusion in the transverse direction. To cast light on the suppression of the strands' wandering, we analyze the topological complexity of subregions of the melt: the complexity is also logarithmically small, and is related to the wandering by a power law. We comment on insights the results give for 3D melts, directed and nondirected.

12.
Phys Rev Lett ; 115(8): 088303, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26340216

RESUMO

The rapid collapse of a polymer, due to external forces or changes in solvent, yields a long-lived "crumpled globule." The conjectured fractal structure shaped by hierarchical collapse dynamics has proved difficult to establish, even with large simulations. To unravel this puzzle, we study a coarse-grained model of in-falling spherical blobs that coalesce upon contact. Distances between pairs of monomers are assigned upon their initial coalescence, and do not "equilibrate" subsequently. Surprisingly, the model reproduces quantitatively the dependence of distance on segment length, suggesting that the slow approach to scaling is related to the wide distribution of blob sizes.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(5 Pt 1): 051301, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18643060

RESUMO

The Green-Kubo relation for two models of granular gases is discussed. In the Maxwell model in any dimension, the effective temperature obtained from the Green-Kubo relation is shown to be frequency independent and equal to the average kinetic energy, known as the granular temperature. In the second model analyzed, a mean-field granular gas, the collision rate of a particle is taken to be proportional to its velocity. The Green-Kubo relation in the high-frequency limit is calculated for this model, and the effective temperature in this limit is shown to be equal to the granular temperature. This result, taken together with previous results showing a difference between the effective temperature at zero frequency (the Einstein relation) and the granular temperature, shows that the Green-Kubo relation for granular gases is violated.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(4 Pt 2): 046132, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16711903

RESUMO

Exact theoretical results for the violation of time-dependent fluctuation-dissipation relations in driven dissipative systems are presented. The ratio of the correlation to delayed response in the stochastic model introduced in [Phys. Rev. Lett. 93, 240601 (2004)] is shown to depend on measurement time. The fluctuation temperature defined by this ratio differs both from the temperature of the environment performing the driving, and from other effective temperatures of the system, such as the average energy (or "granular temperature"). General explanations are given for the time independence of the fluctuation temperature for simple measurements or long measurement times.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...