Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 13219, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580375

RESUMO

Walking on unknown and rough terrain is challenging for (bipedal) robots, while humans naturally cope with perturbations. Therefore, human strategies serve as an excellent inspiration to improve the robustness of robotic systems. Neuromusculoskeletal (NMS) models provide the necessary interface for the validation and transfer of human control strategies. Reflexes play a crucial part during normal locomotion and especially in the face of perturbations, and provide a simple, transferable, and bio-inspired control scheme. Current reflex-based NMS models are not robust to unexpected perturbations. Therefore, in this work, we propose a bio-inspired improvement of a widely used NMS walking model. In humans, different muscles show an increase in activation in anticipation of the landing at the end of the swing phase. This preactivation is not integrated in the used reflex-based walking model. We integrate this activation by adding an additional feedback loop and show that the landing is adapted and the robustness to unexpected step-down perturbations is markedly improved (from 3 to 10 cm). Scrutinizing the effect, we find that the stabilizing effect is caused by changed knee kinematics. Preactivation, therefore, acts as an accommodation strategy to cope with unexpected step-down perturbations, not requiring any detection of the perturbation. Our results indicate that such preactivation can potentially enable a bipedal system to react adequately to upcoming unexpected perturbations and is hence an effective adaptation of reflexes to cope with rough terrain. Preactivation can be ported to robots by leveraging the reflex-control scheme and improves the robustness to step-down perturbation without the need to detect the perturbation. Alternatively, the stabilizing mechanism can also be added in an anticipatory fashion by applying an additional knee torque to the contralateral knee.


Assuntos
Músculo Esquelético , Caminhada , Humanos , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Locomoção , Reflexo/fisiologia , Joelho , Fenômenos Biomecânicos , Eletromiografia , Marcha/fisiologia
2.
IEEE Open J Eng Med Biol ; 4: 259-267, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38196975

RESUMO

Goal: Skeletal muscle mechanics can be assessed in vivo using shear wave elastography. However, the impact of pennation angle on shear wave velocity (SWV) remains unclear. This study aims to quantify the effect by automatically aligning the ultrasound probe with muscle fiber orientation. Methods: We propose an automatic ultrasound probe alignment system and compare it to manual and no alignment. SWV of the gastrocnemius medialis muscle of ten volunteers was measured during rest and isometric contractions. Results: The SWV was different between the conditions (p = 0.008). The highest SWV was obtained during the automatic alignment and differences between the conditions were most pronounced during high-level contractions. The automatic system yielded more accurate alignment compared to a manual operator (p = 0.05). Conclusions: The present study indicates that pennation angle affects SWV, hence muscle fiber orientation must be considered to reliably interpret SWV. Using automatic alignment systems allows for more accurate alignment, improving the methodology of ultrasound elastography in skeletal muscles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...