Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prostate ; 84(1): 87-99, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37812042

RESUMO

PURPOSE: Despite well-informed work in several malignancies, the phenotypic effects of TP53 mutations in metastatic castration-sensitive prostate cancer (mCSPC) progression and metastasis are not clear. We characterized the structure-function and clinical impact of TP53 mutations in mCSPC. PATIENTS AND METHODS: We performed an international retrospective review of men with mCSPC who underwent next-generation sequencing and were stratified according to TP53 mutational status and metastatic burden. Clinical outcomes included radiographic progression-free survival (rPFS) and overall survival (OS) evaluated with Kaplan-Meier and multivariable Cox regression. We also utilized isogenic cancer cell lines to assess the effect of TP53 mutations and APR-246 treatment on migration, invasion, colony formation in vitro, and tumor growth in vivo. Preclinical experimental observations were compared using t-tests and ANOVA. RESULTS: Dominant-negative (DN) TP53 mutations were enriched in patients with synchronous (vs. metachronous) (20.7% vs. 6.3%, p < 0.01) and polymetastatic (vs. oligometastatic) (14.4% vs. 7.9%, p < 0.01) disease. On multivariable analysis, DN mutations were associated with worse rPFS (hazards ratio [HR] = 1.97, 95% confidence interval [CI]: 1.31-2.98) and overall survival [OS] (HR = 2.05, 95% CI: 1.14-3.68) compared to TP53 wild type (WT). In vitro, 22Rv1 TP53 R175H cells possessed stronger migration, invasion, colony formation ability, and cellular movement pathway enrichment in RNA sequencing analysis compared to 22Rv1 TP53 WT cells. Treatment with APR-246 reversed the effects of TP53 mutations in vitro and inhibited 22Rv1 TP53 R175H tumor growth in vivo in a dosage-dependent manner. CONCLUSIONS: DN TP53 mutations correlated with worse prognosis in prostate cancer patients and higher metastatic potential, which could be counteracted by APR-246 treatment suggesting a potential future therapeutic avenue.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Prognóstico , Intervalo Livre de Progressão , Mutação , Relação Estrutura-Atividade , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteína Supressora de Tumor p53/genética
2.
bioRxiv ; 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37162859

RESUMO

Cancers commonly harbor point mutations in TP53 that cause overexpression of functionally inactive p53 proteins. These mutant forms of p53 are immunogenic, and therefore present tantalizing targets for new forms of immunotherapy. Understanding how the immune system recognizes p53 is an important prerequisite for the development of targeted therapeutic strategies designed to exploit this common neoantigen. Monoclonal antibodies have been extensively used to probe the structural conformation of the varied isoforms of p53 and their respective mutants, and are still indispensable tools for studying the complex biological functions of these proteins. In this report, we describe the mapping of a novel epitope on p53 that appears to be shared by heat shock proteins (HSPs), which are typically upregulated in response to a variety of viral infections.

3.
STAR Protoc ; 3(1): 101123, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35098167

RESUMO

The AdenoBuilder platform enables the in vitro assembly of recombinant vectors from plasmid inserts that span the adenovirus genome. Two advantages of AdenoBuilder are the ease of modifying the genome and the ability to produce multicomponent vectors in a single step, facilitating parallel approaches to vector optimization. This protocol describes how to introduce transgenes in place of the endogenous Human Adenovirus serotype 5 (HAd5) E1 and/or E3 genes and can be applied to other parts of the HAd5 genome. For complete details on the use and execution of this protocol, please refer to Miciak et al. (2018).


Assuntos
Adenoviridae/genética , Recombinação Genética , Vetores Genéticos , Plasmídeos , Transgenes
4.
Elife ; 102021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726152

RESUMO

In pigs, nitrate supplements can protect salivary glands from the damage caused by radiation therapy to the head and neck.


Assuntos
Neoplasias de Cabeça e Pescoço , Animais , Glândulas Salivares , Suínos
6.
Cancer Res ; 80(2): 153-155, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941677

RESUMO

To what extent does the acquisition of mesenchymal phenotypes by tumor epithelial cells contribute to metastasis? A definitive answer to this question has remained elusive despite much experimentation and debate. Recently, an influential study based on fluorescence-based lineage tracing technology provided evidence that very few of the cells that populate experimental metastases in fact undergo the epithelial-to-mesenchymal transition. Persistent questions regarding the concordance between marker conversion and cell phenotypes prompted Lourenco and colleagues to complement their lineage tracking system with single-cell analysis. This granular approach provides an unprecedented view of the phenotypic transitions that take place during metastasis and their striking heterogeneity.See related article by Lourenco et al., p. 163.


Assuntos
Neoplasias da Mama , Células Epiteliais , Transição Epitelial-Mesenquimal , Humanos , Fenótipo
7.
Int J Hyperthermia ; 36(1): 712-720, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31345068

RESUMO

Purpose: A proposed mechanism for the enhanced effectiveness of hyperthermia and doxorubicin (Dox) combinations is increased intracellular Dox concentrations resulting from heat-induced cell stress. The purpose of this study was to determine whether specific varied Dox and heat combinations produce measurable effects greater than the additive combination, and whether these effects can be attributed to heat-induced increases in intracellular Dox concentrations. Methods: HCT116, HT29 and CT26 cells were exposed to Dox and water bath heating independently. A clonogenic survival assay was used to determine cell killing and intracellular Dox concentrations were measured in HCT116 cells with mass spectrometry. Cells were exposed to heating at 42 °C (60 min) and 0.5 µg/ml of Dox at varying intervals. Synergy was determined by curve-fitting and isobologram analysis. Results: All cell lines displayed synergistic effects of combined heating and Dox. A maximum synergistic effect was achieved with simultaneous cell exposure to Dox and heat. For exposures at 42 °C, the synergistic effect was most pronounced at Dox concentrations <0.5 µg/ml. Increased intracellular concentrations of Dox in HCT116 cells caused by heat-stress did not generate a concomitant thermal enhancement. Conclusions: Simultaneous exposure of HCT116 cells to heating and Dox is more effective than sequential exposure. Heat-induced cell responses are accompanied by increased intracellular Dox concentrations; however, clonogenic survival data do not support this as the cause for synergistic cytotoxicity.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Temperatura Alta , Transporte Biológico , Morte Celular , Linhagem Celular Tumoral , Humanos
8.
PLoS One ; 13(6): e0199563, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29949649

RESUMO

The adenoviruses are essential tools for basic research and therapeutic development. Robust methods for the generation of mutant and recombinant viruses are crucial for these diverse applications. Here we describe a simple plasmid-based method that permits highly efficient modification of the adenoviral genome and rapid production of high-titer virus stocks. The 36-kilobase genome of adenovirus serotype 5 was divided into seven tractable blocks that could be individually modified in a single step and reassembled in vitro. Because the system is composed of compact modules, modifications at different loci can be readily recombined. Viral assemblies were delivered to packaging cells by electroporation, a strategy that consistently resulted in the de novo production of 108 infectious units in 3-5 days. In principle, a similar strategy could be applied to any other adenovirus serotype or to other double-strand DNA viruses.


Assuntos
Adenovírus Humanos/genética , DNA Recombinante , Técnicas Genéticas , Genoma Viral , Plasmídeos , Montagem de Vírus , Animais , Chlorocebus aethiops , Eletroporação , Vetores Genéticos , Células HEK293 , Humanos , Células Vero
9.
Cell Cycle ; 16(14): 1325, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28636464
10.
Environ Mol Mutagen ; 58(2): 84-98, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28181292

RESUMO

Base excision repair (BER) is the major pathway for coping with most forms of endogenous DNA damage, and defects in the process have been associated with carcinogenesis. Apurinic/apyrimidinic endonuclease 1 (APE1) is a central participant in BER, functioning as a critical endonuclease in the processing of noncoding abasic sites in DNA. Evidence has suggested that APE1 missense mutants, as well as altered expression or localization of the protein, can contribute to disease manifestation. We report herein that the tumor-associated APE1 variant, R237C, shows reduced complementation efficiency of the methyl methanesulfonate hypersensitivity and impaired cell growth exhibited by APE1-deficient mouse embryonic fibroblasts. Overexpression of wild-type APE1 or the R237C variant in the nontransformed C127I mouse cell line had no effect on proliferation, cell cycle status, steady-state DNA damage levels, mitochondrial function, or cellular transformation. A human cell line heterozygous for an APE1 knockout allele had lower levels of endogenous APE1, increased cellular sensitivity to DNA-damaging agents, impaired proliferation with time, and a distinct global gene expression pattern consistent with a stress phenotype. Our results indicate that: (i) the tumor-associated R237C variant is a possible susceptibility factor, but not likely a driver of cancer cell phenotypes, (ii) overexpression of APE1 does not readily promote cellular transformation, and (iii) haploinsufficiency at the APE1 locus can have profound cellular consequences, consistent with BER playing a critical role in proliferating cells. Environ. Mol. Mutagen. 58:84-98, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Transformação Celular Neoplásica/genética , Dano ao DNA/genética , Reparo do DNA/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Técnicas de Inativação de Genes , Teste de Complementação Genética , Células HCT116 , Humanos , Mesilatos/farmacologia , Camundongos Transgênicos , Tamoxifeno/farmacologia
11.
Biochim Biophys Acta ; 1865(2): 220-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26951863

RESUMO

The story of p53 and how we came to understand it is punctuated by fundamental insights into the essence of cancer. In the decades since its discovery, p53 has been shown to be centrally involved in most, if not all, of the cellular processes that maintain tissue homeostasis. Extensive functional analyses of p53 and its tumor-associated mutants have illuminated many of the common defects shared by most cancer cells. As the central character in a tale that continues to unfold, p53 has become increasingly familiar and yet remains surprisingly inscrutable. New relationships periodically come to light, and surprising, novel activities continue to emerge, thereby revealing new dimensions and aspects of its function. What lies at the very core of this complex protagonist? What is its prime motivation? As every avid reader knows, the elements of character are profoundly shaped by adversity--originating from within and without. And so it is with p53. This review will briefly recap the coordinated responses of p53 to viral infection, and outline a hypothetical model that would explain how an abundance of seemingly unrelated phenotypic attributes may in the end reflect a singular function. All stories eventually draw to a conclusion. This epic tale may eventually leave us with the realization that p53, most simply described, is a protein that evolved to mediate immune surveillance.


Assuntos
Imunidade Inata , Proteína Supressora de Tumor p53/fisiologia , Animais , Comunicação Celular , Dano ao DNA , Glucose/metabolismo , Humanos , Neoplasias/etiologia
12.
Cell Cycle ; 14(18): 2886-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26178348

RESUMO

Chromothripsis is a recently recognized mode of genetic instability that generates chromosomes with strikingly large numbers of segmental re-arrangements. While the characterization of these derivative chromosomes has provided new insights into the processes by which cancer genomes can evolve, the underlying signaling events and molecular mechanisms remain unknown. In medulloblastomas, chromothripsis has been observed to occur in the context of mutational inactivation of p53 and activation of the canonical Hedgehog (Hh) pathway. Recent studies have illuminated mechanistic links between these 2 signaling pathways, including a novel PTCH1 homolog that is regulated by p53. Here, we integrate this new pathway into a hypothetical model for the catastrophic DNA breakage that appears to trigger profound chromosomal rearrangements.


Assuntos
Instabilidade Cromossômica , Modelos Genéticos , Quebras de DNA , Regulação Neoplásica da Expressão Gênica , Rearranjo Gênico , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/fisiologia , Neoplasias/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Transdução de Sinais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/fisiologia
13.
Neuro Oncol ; 17(4): 545-54, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25253417

RESUMO

BACKGROUND: Medulloblastoma is the most common malignant brain tumor in children. Current standard treatments cure 40%-60% of patients, while the majority of survivors suffer long-term neurological sequelae. The identification of 4 molecular groups of medulloblastoma improved the clinical management with the development of targeted therapies; however, the tumor acquires resistance quickly. Mebendazole (MBZ) has a long safety record as antiparasitic in children and has been recently implicated in inhibition of various tyrosine kinases in vitro. Here, we investigated the efficacy of MBZ in various medulloblastoma subtypes and MBZ's impact on vascular endothelial growth factor receptor 2 (VEGFR2) and tumor angiogenesis. METHODS: The inhibition of MBZ on VEGFR2 kinase was investigated in an autophosphorylation assay and a cell-free kinase assay. Mice bearing orthotopic PTCH1-mutant medulloblastoma allografts, a group 3 medulloblastoma xenograft, and a PTCH1-mutant medulloblastoma with acquired resistance to the smoothened inhibitor vismodegib were treated with MBZ. The survival benefit and the impact on tumor angiogenesis and VEGFR2 kinase function were analyzed. RESULTS: We determined that MBZ interferes with VEGFR2 kinase by competing with ATP. MBZ selectively inhibited tumor angiogenesis but not the normal brain vasculatures in orthotopic medulloblastoma models and suppressed VEGFR2 kinase in vivo. MBZ significantly extended the survival of medulloblastoma models derived from different molecular backgrounds. CONCLUSION: Our findings support testing of MBZ as a possible low-toxicity therapy for medulloblastomas of various molecular subtypes, including tumors with acquired vismodegib resistance. Its antitumor mechanism may be partially explained by inhibition of tumor angiogenesis.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Cerebelares/tratamento farmacológico , Mebendazol/uso terapêutico , Meduloblastoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Neoplasias Cerebelares/enzimologia , Feminino , Humanos , Meduloblastoma/enzimologia , Camundongos , Camundongos Nus , Resultado do Tratamento , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Mol Cancer Ther ; 14(1): 3-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25376612

RESUMO

The hedgehog (Hh) signaling pathway is activated in many types of cancer and therefore presents an attractive target for new anticancer agents. Here, we show that mebendazole, a benzamidazole with a long history of safe use against nematode infestations and hydatid disease, potently inhibited Hh signaling and slowed the growth of Hh-driven human medulloblastoma cells at clinically attainable concentrations. As an antiparasitic, mebendazole avidly binds nematode tubulin and causes inhibition of intestinal microtubule synthesis. In human cells, mebendazole suppressed the formation of the primary cilium, a microtubule-based organelle that functions as a signaling hub for Hh pathway activation. The inhibition of Hh signaling by mebendazole was unaffected by mutants in the gene that encodes human Smoothened (SMO), which are selectively propagated in cell clones that survive treatment with the Hh inhibitor vismodegib. Combination of vismodegib and mebendazole resulted in additive Hh signaling inhibition. Because mebendazole can be safely administered to adults and children at high doses over extended time periods, we propose that mebendazole could be rapidly repurposed and clinically tested as a prospective therapeutic agent for many tumors that are dependent on Hh signaling.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Reposicionamento de Medicamentos/métodos , Proteínas Hedgehog/antagonistas & inibidores , Mebendazol/administração & dosagem , Meduloblastoma/tratamento farmacológico , Anilidas/farmacologia , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Células HEK293 , Humanos , Mebendazol/farmacologia , Meduloblastoma/genética , Camundongos , Camundongos Nus , Mutação , Células NIH 3T3 , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened , Ensaios Antitumorais Modelo de Xenoenxerto
15.
J Biol Chem ; 289(47): 33020-31, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25296753

RESUMO

The p53-mediated responses to DNA damage and the Hedgehog (Hh) signaling pathway are each recurrently dysregulated in many types of human cancer. Here we describe PTCH53, a p53 target gene that is homologous to the tumor suppressor gene PTCH1 and can function as a repressor of Hh pathway activation. PTCH53 (previously designated PTCHD4) was highly responsive to p53 in vitro and was among a small number of genes that were consistently expressed at reduced levels in diverse TP53 mutant cell lines and human tumors. Increased expression of PTCH53 inhibited canonical Hh signaling by the G protein-coupled receptor SMO. PTCH53 thus delineates a novel, inducible pathway by which p53 can repress tumorigenic Hh signals.


Assuntos
Proteínas Hedgehog/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Sítios de Ligação/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação para Baixo , Células HCT116 , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Supressora de Tumor p53/metabolismo
16.
Free Radic Biol Med ; 73: 270-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24887096

RESUMO

We previously reported that Polo-like kinase 2 (PLK2) is highly expressed in cells with defective mitochondrial respiration and is essential for their survival. Although PLK2 has been widely studied as a cell cycle regulator, we have uncovered an antioxidant function for this kinase that activates the GSK3-NRF2 signaling pathway. Here, we report that the expression of PLK2 is responsive to oxidative stress and that PLK2 mediates antioxidant signaling by phosphorylating GSK3, thereby promoting the nuclear translocation of NRF2. We further show that the antioxidant activity of PLK2 is essential for preventing p53-dependent necrotic cell death. Thus, the regulation of redox homeostasis by PLK2 promotes the survival of cells with dysfunctional mitochondria, which may have therapeutic implications for cancer and neurodegenerative diseases.


Assuntos
Antioxidantes/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Mitocôndrias/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Células HCT116 , Humanos , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno , Transplante Heterólogo
17.
Mol Cancer Res ; 12(7): 1029-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24743655

RESUMO

UNLABELLED: African Americans are disproportionately affected by early-onset, high-grade malignancies. A fraction of this cancer health disparity can be explained by genetic differences between individuals of African or European descent. Here the wild-type Pro/Pro genotype at the TP53Pro72Arg (P72R) polymorphism (SNP: rs1042522) is more frequent in African Americans with cancer than in African Americans without cancer (51% vs. 37%), and is associated with a significant increase in the rates of cancer diagnosis in African Americans. To test the hypothesis that Tp53 allele-specific gene expression may contribute to African American cancer disparities, TP53 hemizygous knockout variants were generated and characterized in the RKO colon carcinoma cell line, which is wild type for TP53 and heterozygous at the TP53Pro72Arg locus. Transcriptome profiling, using RNAseq, in response to the DNA-damaging agent etoposide revealed a large number of Tp53-regulated transcripts, but also a subset of transcripts that were TP53Pro72Arg allele specific. In addition, a shRNA-library suppressor screen for Tp53 allele-specific escape from Tp53-induced arrest was performed. Several novel RNAi suppressors of Tp53 were identified, one of which, PRDM1ß (BLIMP-1), was confirmed to be an Arg-specific transcript. Prdm1ß silences target genes by recruiting H3K9 trimethyl (H3K9me3) repressive chromatin marks, and is necessary for stem cell differentiation. These results reveal a novel model for African American cancer disparity, in which the TP53 codon 72 allele influences lifetime cancer risk by driving damaged cells to differentiation through an epigenetic mechanism involving gene silencing. IMPLICATIONS: TP53 P72R polymorphism significantly contributes to increased African American cancer disparity.


Assuntos
Negro ou Afro-Americano/genética , Neoplasias do Colo/etnologia , Neoplasias do Colo/genética , Genes p53 , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Alelos , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Transcriptoma
18.
Oncotarget ; 4(12): 2208-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24368541

RESUMO

Hedgehog (Hh) signaling is largely suppressed in the normal differentiated tissues of the adult but activated in many cancers. The Hh pathway can either be activated by the expression of Hh ligands, or by mutations that cause constitutive, ligand-independent signaling. Colorectal cancer cells frequently express Hh ligands that are believed to exert paracrine effects on the stromal component of the tumor. Evidence for a more direct role of Hh signaling on the growth and evolution of colorectal cancer cell clones has been lacking. Here, we report a loss-of-function mutation of PTCH1, a tumor suppressor in the Hh pathway, in a colorectal cancer that exhibits transcriptional upregulation of the downstream Hh gene GLI1. This finding demonstrates that autocrine Hh signaling can provide a selective advantage to evolving tumors that arise in the colorectal epithelia, and suggests a definable group of colorectal cancer patients that could derive enhanced benefit from Hh pathway inhibitors.


Assuntos
Neoplasias Colorretais/genética , Receptores de Superfície Celular/genética , Carcinogênese/genética , Neoplasias Colorretais/metabolismo , Genes Supressores de Tumor , Humanos , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
19.
Cancer Biol Ther ; 13(13): 1319-24, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22895071

RESUMO

The X-linked deubiquitinase USP9X affects the stability and activity of numerous regulatory proteins that influence cell survival. Recent studies suggest that decreased USP9X expression can confer a selective advantage onto developing cancer cells and thereby promotes disease progression. To examine the effect of USP9X on the cellular responses to anticancer therapies, we derived cancer cell lines in which the USP9X locus was disrupted by homologous recombination. The resulting USP9X-deficient cancer cells exhibited increased activation of apoptotic pathways and markedly decreased clonogenic survival in response to 5-fluorouracil, a chemotherapeutic drug that is widely used for treatment of gastrointestinal malignancies. These unexpected results suggest that cancers with low USP9X expression might be specifically sensitized to some conventional therapeutic agents.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Fluoruracila/farmacologia , Ubiquitina Tiolesterase/genética , Antimetabólitos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Neoplasias Colorretais/enzimologia , Neoplasias Gastrointestinais/tratamento farmacológico , Neoplasias Gastrointestinais/genética , Células HCT116 , Humanos , Ubiquitina Tiolesterase/deficiência , Ubiquitina Tiolesterase/metabolismo
20.
Cell Cycle ; 11(8): 1564-72, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22433954

RESUMO

Many cancer cells are unable to maintain a numerically stable chromosome complement. It is well established that aberrant cell division can generate progeny with increased ploidy, but the genetic factors required for maintenance of diploidy are not well understood. Using an isogenic model system derived by gene targeting, we examined the role of Chk1 in p53-proficient and -deficient cancer cells. Targeted inactivation of a single CHK1 allele in stably diploid cells caused an elevated frequency of mitotic bypass if p53 was naturally mutated or experimentally disrupted by homologous recombination. CHK1-haploinsufficient, p53-deficient cells frequently underwent sequential rounds of DNA synthesis without an intervening mitosis. These aberrant cell cycles resulted in whole-genome endoreduplication and tetraploidization. The unscheduled bypass of mitosis could be suppressed by targeted reversion of a p53 mutation or by exogenous expression of Cdk1. In contrast, the number of tetraploid cells was not increased in isogenic cell populations that harbor hypomorphic ATR mutations, suggesting that suppression of unscheduled mitotic bypass is a distinct function of Chk1. These results are consistent with a recently described role for Chk1 in promoting the expression of genes that promote cell cycle transitions and demonstrate how Chk1 might prevent tetraploidization during the cancer cell cycle.


Assuntos
Mitose , Proteínas Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Alelos , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Dano ao DNA , Diploide , Células HCT116 , Haploinsuficiência , Recombinação Homóloga , Humanos , Metáfase , Mutação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Interferência de RNA , Tetraploidia , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...