Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 36(5): 679-692, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28188244

RESUMO

Vesiculoviruses enter cells by membrane fusion, driven by a large, low-pH-induced, conformational change in the fusion glycoprotein G that involves transition from a trimeric pre-fusion toward a trimeric post-fusion state via monomeric intermediates. Here, we present the structure of the G fusion protein at intermediate pH for two vesiculoviruses, vesicular stomatitis virus (VSV) and Chandipura virus (CHAV), which is responsible for deadly encephalopathies. First, a CHAV G crystal structure shows two intermediate conformations forming a flat dimer of heterodimers. On virions, electron microscopy (EM) and tomography reveal monomeric spikes similar to one of the crystal conformations. In solution, mass spectrometry shows dimers of G. Finally, mutations at a dimer interface, involving fusion domains associated in an antiparallel manner to form an intermolecular ß-sheet, affect G fusion properties. The location of the compensatory mutations restoring fusion activity strongly suggests that this interface is functionally relevant. This work reveals the range of G structural changes and suggests that G monomers can re-associate, through antiparallel interactions between fusion domains, into dimers that play a role at some early stage of the fusion process.


Assuntos
Glicoproteínas/metabolismo , Vesiculovirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Cristalografia por Raios X , Concentração de Íons de Hidrogênio , Espectrometria de Massas , Microscopia Eletrônica , Modelos Biológicos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Tomografia
2.
Microbes Infect ; 19(4-5): 277-287, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28025070

RESUMO

Anti-retroviral therapy is useful to treat human immunodeficiency virus type 1 (HIV-1)-infected individuals, but has some major problems, such as the generation of multidrug-resistant viruses. To develop a novel supplemental or alternative therapeutic for CCR5-tropic (R5) HIV-1 infection, we generated a recombinant vesicular stomatitis virus (rVSV) in which the gene encoding its envelope glycoprotein (G) was replaced with the genes encoding R5 HIV-1 receptors (human CD4 and CCR5), designated VSVΔG-CC5. Our present data demonstrate that this rVSV specifically infects cells that are transiently expressing R5 HIV-1 envelope glycoproteins, but does not infect those expressing CXCR4-tropic HIV-1 envelope glycoproteins. Notably, after a CD4+CCR5+ T cell line or primary cells initially infected with R5 HIV-1 were inoculated with G-complemented VSVΔG-CC5, the rVSV significantly reduced the number of HIV-1-infected cells, probably through direct targeting of the rVSV and VSV-mediated cytolysis and/or through syncytium formation- or cell-cell fusion-dependent killing, and markedly inhibited HIV-1 production. Furthermore, G-complemented VSVΔG-CC5 also efficiently inhibited HIV-1 infection in R5 HIV-1-infected humanized immunodeficient mice. Taken together, our findings indicate that a cytolytic rVSV that targets and eliminates R5 HIV-1-infected cells potentially has therapeutic value for controlling R5 HIV-1 infection.


Assuntos
Antígenos CD4/genética , Infecções por HIV/prevenção & controle , Terapia Viral Oncolítica/métodos , Receptores CCR5/genética , Vesiculovirus/genética , Proteínas do Envelope Viral/genética , Replicação Viral/genética , Animais , Antivirais/farmacologia , Antígenos CD4/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Cricetinae , Células HEK293 , Infecções por HIV/virologia , HIV-1/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores CCR5/metabolismo , Receptores CXCR4/metabolismo , Carga Viral
3.
J Virol ; 90(5): 2544-50, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26676789

RESUMO

UNLABELLED: Seasonal influenza virus infections continue to cause significant disease each year, and there is a constant threat of the emergence of reassortant influenza strains causing a new pandemic. Available influenza vaccines are variably effective each season, are of limited scope at protecting against viruses that have undergone significant antigenic drift, and offer low protection against newly emergent pandemic strains. "Universal" influenza vaccine strategies that focus on the development of humoral immunity directed against the stalk domains of the viral hemagglutinin (HA) show promise for protecting against diverse influenza viruses. Here, we describe such a strategy that utilizes vesicular stomatitis virus (VSV) as a vector for chimeric hemagglutinin (cHA) antigens. This vaccination strategy is effective at generating HA stalk-specific, broadly cross-reactive serum antibodies by both intramuscular and intranasal routes of vaccination. We show that prime-boost vaccination strategies provide protection against both lethal homologous and heterosubtypic influenza challenge and that protection is significantly improved with intranasal vaccine administration. Additionally, we show that vaccination with VSV-cHAs generates greater stalk-specific and cross-reactive serum antibodies than does vaccination with VSV-vectored full-length HAs, confirming that cHA-based vaccination strategies are superior at generating stalk-specific humoral immunity. VSV-vectored influenza vaccines that express chimeric hemagglutinin antigens offer a novel means for protecting against widely diverging influenza viruses. IMPORTANCE: Universal influenza vaccination strategies should be capable of protecting against a wide array of influenza viruses, and we have developed such an approach utilizing a single viral vector system. The potent antibody responses that these vaccines generate are shown to protect mice against lethal influenza challenges with highly divergent viruses. Notably, intranasal vaccination offers significantly better protection than intramuscular vaccination in a lethal virus challenge model. The results described in this study offer insights into the mechanisms by which chimeric hemagglutinin (HA)-based vaccines confer immunity, namely, that the invariant stalk of cHA antigens is superior to full-length HA antigens at inducing cross-reactive humoral immune responses and that VSV-cHA vaccine-induced protection varies by site of inoculation, and contribute to the further development of universal influenza virus vaccines.


Assuntos
Portadores de Fármacos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Orthomyxoviridae/imunologia , Vesiculovirus/genética , Administração Intranasal , Animais , Anticorpos Antivirais/sangue , Peso Corporal , Reações Cruzadas , Modelos Animais de Doenças , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Injeções Intramusculares , Camundongos Endogâmicos BALB C , Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Análise de Sobrevida , Vacinação/métodos , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
4.
J Virol ; 89(20): 10407-15, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26246574

RESUMO

UNLABELLED: More than 500,000 people die each year from the liver diseases that result from chronic hepatitis B virus (HBV) infection. Therapeutic vaccines, which aim to elicit an immune response capable of controlling the virus, offer a potential new treatment strategy for chronic hepatitis B. Recently, an evolved, high-titer vaccine platform consisting of Semliki Forest virus RNA replicons that express the vesicular stomatitis virus glycoprotein (VSV G) has been described. This platform generates virus-like vesicles (VLVs) that contain VSV G but no other viral structural proteins. We report here that the evolved VLV vector engineered to additionally express the HBV middle surface envelope glycoprotein (MHBs) induces functional CD8 T cell responses in mice. These responses were greater in magnitude and broader in specificity than those obtained with other immunization strategies, including recombinant protein and DNA. Additionally, a single immunization with VLV-MHBs protected mice from HBV hydrodynamic challenge, and this protection correlated with the elicitation of a CD8 T cell recall response. In contrast to MHBs, a VLV expressing HBV core protein (HBcAg) neither induced a CD8 T cell response in mice nor protected against challenge. Finally, combining DNA and VLV-MHBs immunization led to induction of HBV-specific CD8 T cell responses in a transgenic mouse model of chronic HBV infection. The ability of VLV-MHBs to induce a multispecific T cell response capable of controlling HBV replication, and to generate immune responses in a tolerogenic model of chronic infection, indicates that VLV vaccine platforms may offer a unique strategy for HBV therapeutic vaccination. IMPORTANCE: HBV infection is associated with significant morbidity and mortality. Furthermore, treatments for chronic infection are suboptimal and rarely result in complete elimination of the virus. Therapeutic vaccines represent a unique approach to HBV treatment and have the potential to induce long-term control of infection. Recently, a virus-based vector system that combines the nonstructural proteins of Semliki Forest virus with the VSV glycoprotein has been described. In this study, we used this system to construct a novel HBV vaccine and demonstrated that the vaccine is capable of inducing virus-specific immune responses in mouse models of acute and chronic HBV replication. These findings highlight the potential of this new vaccine system and support the idea that highly immunogenic vaccines, such as viral vectors, may be useful in the treatment of chronic hepatitis B.


Assuntos
Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B Crônica/prevenção & controle , Imunidade Celular/efeitos dos fármacos , Vacinas de Partículas Semelhantes a Vírus/imunologia , Sequência de Aminoácidos , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Linhagem Celular , Cricetulus , ELISPOT , Células Epiteliais/imunologia , Células Epiteliais/virologia , Engenharia Genética , Vetores Genéticos/química , Vetores Genéticos/imunologia , Glicoproteínas/genética , Glicoproteínas/imunologia , Antígenos do Núcleo do Vírus da Hepatite B/genética , Antígenos do Núcleo do Vírus da Hepatite B/imunologia , Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/genética , Hepatite B Crônica/imunologia , Hepatite B Crônica/virologia , Imunização , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Replicação Viral/efeitos dos fármacos
5.
PLoS Pathog ; 11(3): e1004756, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25803715

RESUMO

Chandipura virus (CHAV), a member of the vesiculovirus genus, is an emerging human pathogen. As for other rhabdoviruses, CHAV entry into susceptible cells is mediated by its single envelope glycoprotein G which is both involved in receptor recognition and fusion of viral and cellular membranes. Here, we have characterized the fusion properties of CHAV-G. As for vesicular stomatitis virus (VSV, the prototype of the genus) G, fusion is triggered at low pH below 6.5. We have also analyzed the biochemical properties of a soluble form of CHAV-G ectodomain (CHAV-Gth, generated by thermolysin limited-proteolysis of recombinant VSV particles in which the G gene was replaced by that of CHAV). The overall behavior of CHAV-Gth is similar to that previously reported for VSV-Gth. Particularly, CHAV-Gth pre-fusion trimer is not stable in solution and low-pH-induced membrane association of CHAV-Gth is reversible. Furthermore, CHAV-Gth was crystallized in its low pH post-fusion conformation and its structure was determined at 3.6Å resolution. An overall comparison of this structure with the previously reported VSV-Gth post-fusion conformation, shows a high structural similarity as expected from the comparison of primary structure. Among the three domains of G, the pleckstrin homology domain (PHD) appears to be the most divergent and the largest differences are confined to the secondary structure of the major antigenic site of rhabdoviruses. Finally, local differences indicate that CHAV has evolved alternate structural solutions in hinge regions between PH and fusion domains but also distinct pH sensitive switches. Globally the comparison between the post fusion conformation of CHAV and VSV-G highlights several features essential for the protein's function. It also reveals the remarkable plasticity of G in terms of local structures.


Assuntos
Evolução Molecular , Nucleocapsídeo/química , Vesiculovirus/química , Proteínas Virais de Fusão/química , Humanos , Concentração de Íons de Hidrogênio , Nucleocapsídeo/genética , Nucleocapsídeo/metabolismo , Estrutura Terciária de Proteína , Vesiculovirus/genética , Vesiculovirus/metabolismo , Proteínas Virais de Fusão/genética , Proteínas Virais de Fusão/metabolismo
6.
Jpn J Infect Dis ; 68(3): 203-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25672345

RESUMO

To develop surrogate viruses for hepatitis C virus (HCV), we previously produced recombinant vesicular stomatitis viruses (rVSVs) lacking glycoprotein G but instead expressing chimeric HCV E1/E2 fused to G. These rVSVs were not infectious in HCV-susceptible hepatoma cells. In this study, to develop an infectious surrogate HCV based on an rVSV (vesicular stomatitis virus [VSV]/HCV), we generated a novel rVSV encoding the native E1/E2 (H77 strain) and green fluorescent protein (GFP) instead of G. Here, we showed that this VSV/HCV efficiently infected human hepatoma cells, including Huh7 human hepatoma cells, expressed GFP in these cells, and propagated, but did not do so in nonsusceptible BHK-21 cells. The infectivity of VSV/HCV, measured as the number of foci of GFP-positive cells, was specifically reduced by the addition of chimpanzee anti-HCV serum, anti-E2 antibody, or anti-CD81 antibody to the cultures. When sera obtained from HCV-infected or uninfected patients were added, infection was selectively inhibited only by the sera of HCV-infected patients. These data together suggest that this infectious GFP-expressing VSV/HCV could be a useful tool for studying the mechanisms of HCV entry into cells and for assessing potential inhibitors of viral entry, including neutralizing antibodies.


Assuntos
Proteínas de Fluorescência Verde/genética , Hepacivirus/genética , Modelos Biológicos , Estomatite Vesicular/genética , Proteínas do Envelope Viral/genética , Animais , Linhagem Celular , Cricetinae , Proteínas de Fluorescência Verde/metabolismo , Hepacivirus/metabolismo , Hepatite C/virologia , Humanos , Proteínas do Envelope Viral/metabolismo
7.
Virology ; 476: 405-412, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25591175

RESUMO

We reported previously on a vaccine approach that conferred apparent sterilizing immunity to SIVsmE660. The vaccine regimen employed a prime-boost using vectors based on recombinant vesicular stomatitis virus (VSV) and an alphavirus replicon expressing either SIV Gag or SIV Env. In the current study, we tested the ability of vectors expressing only the SIVsmE660 Env protein to protect macaques against the same high-dose mucosal challenge. Animals developed neutralizing antibody levels comparable to or greater than seen in the previous vaccine study. When the vaccinated animals were challenged with the same high-dose of SIVsmE660, all became infected. While average peak viral loads in animals were slightly lower than those of previous controls, the viral set points were not significantly different. These data indicate that Gag, or the combination of Gag and Env are required for the generation of apparent sterilizing immunity to the SIVsmE660 challenge.


Assuntos
Vacinas contra a AIDS/imunologia , Produtos do Gene env/imunologia , Produtos do Gene gag/imunologia , Mucosa/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Produtos do Gene env/administração & dosagem , Produtos do Gene env/genética , Produtos do Gene gag/administração & dosagem , Produtos do Gene gag/genética , HIV/genética , HIV/imunologia , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , Infecções por HIV/virologia , Humanos , Macaca mulatta , Mucosa/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética
8.
J Virol ; 89(5): 2820-30, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25540378

RESUMO

UNLABELLED: The emergence of novel influenza viruses that cause devastating human disease is an ongoing threat and serves as an impetus for the continued development of novel approaches to influenza vaccines. Influenza vaccine development has traditionally focused on producing humoral and/or cell-mediated immunity, often against the viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA). Here, we describe a new vaccine candidate that utilizes a replication-defective vesicular stomatitis virus (VSV) vector backbone that lacks the native G surface glycoprotein gene (VSVΔG). The expression of the H5 HA of an H5N1 highly pathogenic avian influenza virus (HPAIV), A/Vietnam/1203/04 (VN1203), and the NA of the mouse-adapted H1N1 influenza virus A/Puerto Rico/8/34 (PR8) in the VSVΔG vector restored the ability of the recombinant virus to replicate in cell culture, without the requirement for the addition of trypsin. We show here that this recombinant virus vaccine candidate was nonpathogenic in mice when given by either the intramuscular or intranasal route of immunization and that the in vivo replication of VSVΔG-H5N1 is profoundly attenuated. This recombinant virus also provided protection against lethal H5N1 infection after a single dose. This novel approach to vaccination against HPAIVs may be widely applicable to other emerging strains of influenza virus. IMPORTANCE: Preparation for a potentially catastrophic influenza pandemic requires novel influenza vaccines that are safe, can be produced and administered quickly, and are effective, both soon after administration and for a long duration. We have created a new influenza vaccine that utilizes an attenuated vesicular stomatitis virus (VSV) vector, to deliver and express influenza virus proteins against which vaccinated animals develop potent antibody responses. The influenza virus hemagglutinin and neuraminidase proteins, expressed on the surface of VSV particles, allowed this vaccine to grow in cell culture and induced a potent antibody response in mice that was effective against infection with a lethal influenza virus. The mice showed no adverse reactions to the vaccine, and they were protected against an otherwise lethal influenza infection after only 14 days postvaccination and after as many as 140 days postvaccination. The ability to rapidly produce this safe and effective vaccine in cell culture is additionally advantageous.


Assuntos
Portadores de Fármacos , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Neuraminidase/imunologia , Vesiculovirus/genética , Proteínas Virais/imunologia , Administração Intranasal , Animais , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/genética , Injeções Intramusculares , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Orthomyxoviridae , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Análise de Sobrevida , Vacinação/métodos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Proteínas Virais/genética , Replicação Viral
9.
Proc Natl Acad Sci U S A ; 111(47): 16866-71, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385608

RESUMO

Self-propagating, infectious, virus-like vesicles (VLVs) are generated when an alphavirus RNA replicon expresses the vesicular stomatitis virus glycoprotein (VSV G) as the only structural protein. The mechanism that generates these VLVs lacking a capsid protein has remained a mystery for over 20 years. We present evidence that VLVs arise from membrane-enveloped RNA replication factories (spherules) containing VSV G protein that are largely trapped on the cell surface. After extensive passaging, VLVs evolve to grow to high titers through acquisition of multiple point mutations in their nonstructural replicase proteins. We reconstituted these mutations into a plasmid-based system from which high-titer VLVs can be recovered. One of these mutations generates a late domain motif (PTAP) that is critical for high-titer VLV production. We propose a model in which the VLVs have evolved in vitro to exploit a cellular budding pathway that is hijacked by many enveloped viruses, allowing them to bud efficiently from the cell surface. Our results suggest a basic mechanism of propagation that may have been used by primitive RNA viruses lacking capsid proteins. Capsids may have evolved later to allow more efficient packaging of RNA, greater virus stability, and evasion of innate immunity.


Assuntos
Alphavirus/genética , Evolução Biológica , Proteínas Estruturais Virais/química , Alphavirus/química , Motivos de Aminoácidos , Técnicas In Vitro , Microscopia Eletrônica de Transmissão
10.
Artigo em Inglês | MEDLINE | ID: mdl-22949203

RESUMO

Fusion in members of the Rhabdoviridae virus family is mediated by the G glycoprotein. At low pH, the G glycoprotein catalyzes fusion between viral and endosomal membranes by undergoing a major conformational change from a pre-fusion trimer to a post-fusion trimer. The structure of the G glycoprotein from vesicular stomatitis virus (VSV G), the prototype of Vesiculovirus, has recently been solved in its trimeric pre-fusion and post-fusion conformations; however, little is known about the structural details of the transition. In this work, a soluble form of the ectodomain of Chandipura virus G glycoprotein (CHAV G(th)) was purified using limited proteolysis of purified virus; this soluble ectodomain was also crystallized. This protein shares 41% amino-acid identity with VSV G and thus its structure could provide further clues about the structural transition of rhabdoviral glycoproteins induced by low pH. Crystals of CHAV G(th) obtained at pH 7.5 diffracted X-rays to 3.1 Å resolution. These crystals belonged to the orthorhombic space group P2(1)2(1)2, with unit-cell parameters a = 150.3, b = 228.2, c = 78.8 Å. Preliminary analysis of the data based on the space group and the self-rotation function indicated that there was no trimeric association of the protomers. This unusual oligomeric status could result from the presence of fusion intermediates in the crystal.


Assuntos
Glicoproteínas/química , Vesiculovirus/química , Proteínas Virais/química , Cristalização , Cristalografia por Raios X
11.
Vaccine ; 30(28): 4233-9, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22537983

RESUMO

In a previous vaccine study, we reported significant and apparently sterilizing immunity to high-dose, mucosal, simian immunodeficiency virus (SIV) quasi-species challenge. The vaccine consisted of vectors based on vesicular stomatitis virus (VSV) expressing simian immunodeficiency virus (SIV) gag and env genes, a boost with propagating replicon particles expressing the same SIV genes, and a second boost with VSV-based vectors. Concurrent with that published study we had a parallel group of macaques given the same doses of vaccine vectors, but in addition, we included a third VSV vector expressing rhesus macaque GM-CSF in the priming immunization only. We report here that addition of the vector expressing GM-CSF did not enhance CD8 T cell or antibody responses to SIV antigens, and almost completely abolished the vaccine protection against high-dose mucosal challenge with SIV. Expression of GM-CSF may have limited vector replication excessively in the macaque model. Our results suggest caution in the use of GM-CSF as a vaccine adjuvant, especially when expressed by a viral vector. Combining vaccine group animals from this study and the previous study we found that there was a marginal but significant positive correlation between the neutralizing antibody to a neutralization resistant SIV Env and protection from infection.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Vacinas contra a SAIDS/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Animais , Vetores Genéticos , Imunidade nas Mucosas , Macaca mulatta , Vacinas contra a SAIDS/administração & dosagem , Vesiculovirus/genética
12.
J Virol ; 85(12): 5764-72, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21490100

RESUMO

We constructed vaccine vectors based on live recombinant vesicular stomatitis virus (VSV) and a Semliki Forest virus (SFV) replicon (SFVG) that propagates through expression of the VSV glycoprotein (G). These vectors expressing simian immunodeficiency virus (SIV) Gag and Env proteins were used to vaccinate rhesus macaques with a new heterologous prime-boost regimen designed to optimize induction of antibody. Six vaccinated animals and six controls were then given a high-dose mucosal challenge with the diverse SIVsmE660 quasispecies. All control animals became infected and had peak viral RNA loads of 10(6) to 10(8) copies/ml. In contrast, four of the vaccinees showed significant (P = 0.03) apparent sterilizing immunity and no detectable viral loads. Subsequent CD8(+) T cell depletion confirmed the absence of SIV infection in these animals. The two other vaccinees had peak viral loads of 7 × 10(5) and 8 × 10(3) copies/ml, levels below those of all of the controls, and showed undetectable virus loads by day 42 postchallenge. The vaccine regimen induced high-titer prechallenge serum neutralizing antibodies (nAbs) to some cloned SIVsmE660 Env proteins, but antibodies able to neutralize the challenge virus swarm were not detected. The cellular immune responses induced by the vaccine were generally weak and did not correlate with protection. Although the immune correlates of protection are not yet clear, the heterologous VSV/SFVG prime-boost is clearly a potent vaccine regimen for inducing virus nAbs and protection against a heterogeneous viral swarm.


Assuntos
Anticorpos Antivirais/sangue , Vetores Genéticos/imunologia , Esquemas de Imunização , Vacinas contra a SAIDS/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/imunologia , Animais , Anticorpos Neutralizantes/sangue , Produtos do Gene env/genética , Produtos do Gene env/imunologia , Produtos do Gene env/metabolismo , Produtos do Gene gag/genética , Produtos do Gene gag/imunologia , Produtos do Gene gag/metabolismo , Vetores Genéticos/administração & dosagem , Imunização , Imunização Secundária , Macaca mulatta , Testes de Neutralização , Vacinas contra a SAIDS/genética , Vacinas contra a SAIDS/imunologia , Vírus da Floresta de Semliki/genética , Vírus da Floresta de Semliki/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/metabolismo , Vírus da Imunodeficiência Símia/patogenicidade , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/metabolismo , Carga Viral
13.
J Virol ; 85(9): 4602-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21325423

RESUMO

We analyzed the ability of a vaccine vector based on vesicular stomatitis virus (VSV) to induce a neutralizing antibody (NAb) response to avian influenza viruses (AIVs) in rhesus macaques. Animals vaccinated with vectors expressing either strain A/Hong Kong/156/1997 or strain A/Vietnam/1203/2004 H5 hemagglutinin (HA) were able to generate robust NAb responses. The ability of the vectors to induce NAbs against homologous and heterologous AIVs after a single dose was dependent upon the HA antigen incorporated into the VSV vaccine. The vectors expressing strain A/Vietnam/1203/2004 H5 HA were superior to those expressing strain A/Hong Kong/156/1997 HA at inducing cross-clade NAbs.


Assuntos
Anticorpos Neutralizantes/sangue , Portadores de Fármacos , Vetores Genéticos , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/imunologia , Vesiculovirus/genética , Animais , Anticorpos Antivirais/sangue , Reações Cruzadas , Virus da Influenza A Subtipo H5N1/genética , Vacinas contra Influenza/genética , Macaca mulatta
14.
J Virol ; 84(15): 7513-22, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20504927

RESUMO

As one of the world's most common infectious diseases, hepatitis B virus (HBV) is a serious worldwide public health problem, with HBV-associated liver disease accounting for more than half a million deaths each year. Although there is an effective prophylactic vaccine currently available to prevent infection, it has a number of characteristics that are suboptimal: multiple doses are needed to induce long-lasting immunity, immunity declines over time, it does not elicit protection in some individuals, and it is not effective therapeutically. We produced a recombinant vesicular stomatitis virus (VSV)-based vaccine vector expressing the HBV middle envelope surface protein (MS) and found that this vector was able to efficiently generate a strong HBs-specific antibody response following a single immunization in mice. A single immunization with the VSV-MS vector also induced robust CD8 T-cell activation. The CD8 T-cell response was greater in magnitude and broader in specificity than the response generated by a vaccinia virus-based vaccine vector or by recombinant protein immunization. Furthermore, a single VSV-MS immunization provided protection against virus challenge in mice. Given the similar antibody titers and superior T-cell responses elicited from a single immunization, a VSV-based HBV vaccine may have advantages over the current recombinant protein vaccine.


Assuntos
Vetores Genéticos , Vacinas contra Hepatite B/administração & dosagem , Vacinas contra Hepatite B/imunologia , Vírus da Hepatite B/imunologia , Hepatite B/prevenção & controle , Vacinação/métodos , Vesiculovirus/genética , Animais , Peso Corporal , Linfócitos T CD8-Positivos/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Hepatite B/patologia , Anticorpos Anti-Hepatite B/sangue , Vacinas contra Hepatite B/genética , Vírus da Hepatite B/genética , Interferon gama/metabolismo , Camundongos , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vaccinia virus/genética
15.
J Virol ; 84(9): 4611-8, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20181720

RESUMO

The emergence in 1997 and continuance today of a highly lethal H5N1 avian influenza virus (AIV) causing human disease has raised concern about an impending pandemic and the need for a vaccine to prepare for such an occurrence. We previously generated an efficacious vesicular stomatitis virus (VSV)-based AIV vaccine expressing H5 hemagglutinin (HA) from the fifth genomic position of VSV (J. A. Schwartz et al., Virology 366:166-173, 2007). Here we have generated and characterized VSV-based vaccines that express the A/Hong Kong/156/1997 (clade 0) H5 HA from the first position of the VSV genome. These vectors induce broadly cross-neutralizing antibodies against homologous and heterologous H5N1 viruses of different clades in mice. The vaccines provide complete protection against morbidity and mortality after heterologous challenge with clade 0 and clade 1 strains in animals even 1 year after vaccination. Postchallenge pulmonary virus loads show that these vectors provide sterilizing immunity. Therefore, VSV-based AIV vaccines are potent, broadly cross-protective pandemic vaccine candidates.


Assuntos
Proteção Cruzada , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vesiculovirus/genética , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Peso Corporal , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza/genética , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/virologia , Análise de Sobrevida , Fatores de Tempo , Ensaio de Placa Viral
16.
Vaccine ; 28(52): 8345-51, 2010 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-19615481

RESUMO

Persistent infection with high-risk human papillomaviruses (HPVs) is the greatest risk factor for the development of HPV-associated cancers. In this study rabbits bearing persistent and potentially malignant papillomas were used to test the efficacy of vaccination with a recombinant DNA and/or vesicular stomatitis virus (VSV) targeting the cottontail rabbit papillomavirus (CRPV) E6 protein. Immune responses were primed with either vector and boosted twice with the homologous or heterologous E6 vector. Over the course of 18 weeks, E6 vaccination reduced papilloma volumes to one third the volume in the controls, and the rabbits boosted with an heterologous vector tended to mount stronger responses. Small and medium-sized papillomas responded significantly but only slightly better than large papillomas. Finally the initial papilloma burden per rabbit, ranging from <100 mm(3) to >1000 mm(3), was not prognostic of antitumor efficacy. In summary both E6 vaccines elicited significant therapeutic immunity, and their sequential use tended to be advantageous.


Assuntos
Proteínas Oncogênicas Virais/imunologia , Papiloma/terapia , Infecções por Papillomavirus/terapia , Vacinas contra Papillomavirus/imunologia , Neoplasias Cutâneas/terapia , Vacinas de DNA/imunologia , Vesiculovirus/genética , Animais , Feminino , Vetores Genéticos , Imunização Secundária/métodos , Proteínas Oncogênicas Virais/genética , Papiloma/imunologia , Papiloma/patologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/patologia , Vacinas contra Papillomavirus/administração & dosagem , Vacinas contra Papillomavirus/genética , Coelhos , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/patologia , Vacinação/métodos , Vacinas de DNA/administração & dosagem , Vacinas de DNA/genética
17.
Comp Med ; 58(2): 129-39, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18524170

RESUMO

Cytomegalovirus is a leading cause of morbidity and mortality among neonatal and immunocompromised patients. The use of vaccine prophylaxis continues to be an effective approach to reducing viral infections and their associated diseases. Murine cytomegalovirus (mCMV) has proven to be a valuable animal model in determining the efficacy of newly developed vaccine strategies in vivo. Live recombinant vesicular stomatitis viruses (rVSV) have successfully been used as vaccine vectors for several viruses to induce strong humoral and cellular immunity. We tested the ability of intranasal immunization with an rVSV expressing the major envelope protein of mCMV, glycoprotein B (gB), to protect against challenge with mCMV in a mouse model. rVSV-gB-infected cells showed strong cytoplasmic and cell surface expression of gB, and neutralizing antibodies to gB were present in mice after a single intranasal vaccination of VSV-gB. After challenge with mCMV, recovery of live virus and viral DNA was significantly reduced in immunized mice. In addition, primed splenocytes produced a CD8+ IFNgamma response to gB. The ability to induce an immune response to a gene product through mucosal vaccination with rVSV-gB represents a potentially effective approach to limiting CMV-induced disease.


Assuntos
Formação de Anticorpos/imunologia , Infecções por Herpesviridae/prevenção & controle , Imunidade Celular/imunologia , Muromegalovirus , Vesiculovirus/fisiologia , Proteínas do Envelope Viral/imunologia , Vacinas Virais/administração & dosagem , Administração Intranasal , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , DNA Recombinante , DNA Viral/análise , Feminino , Infecções por Herpesviridae/imunologia , Imunização , Interferon gama/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Testes de Neutralização , Organismos Livres de Patógenos Específicos , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Proteínas do Envelope Viral/genética , Vacinas Virais/imunologia
18.
Virology ; 366(1): 166-73, 2007 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-17524441

RESUMO

Given the lethality of H5N1 avian influenza viruses (AIV) and the recurring spread from poultry to humans, an effective vaccine against H5N1 viruses may be needed to prevent a pandemic. We generated experimental vaccine vectors based on recombinant vesicular stomatitis virus (VSV) expressing the H5 hemagglutinin (HA) from an H5N1 virus isolated in 1997. The HA gene was expressed either from an attenuated wild-type VSV vector or from a single-cycle vector containing a deletion of the VSV G gene. We found that all of the vectors induced potent neutralizing antibody titers against the homologous and antigenically heterologous H5N1 viruses isolated in 2004 and 2005. Vaccination of mice with any combination of prime or prime/boost vectors provided long-lasting protection (>7 months) against challenge with AIV, even in animals receiving a single dose of single-cycle vaccine. Our data indicate that these recombinants are promising vaccine candidates for pandemic influenza.


Assuntos
Anticorpos Antivirais/imunologia , Virus da Influenza A Subtipo H5N1/genética , Vírus da Estomatite Vesicular Indiana/genética , Vírus da Estomatite Vesicular Indiana/imunologia , Animais , Anticorpos Antivirais/genética , Sequência de Bases , Linhagem Celular , Cricetinae , Reações Cruzadas , Primers do DNA , Feminino , Vetores Genéticos , Virus da Influenza A Subtipo H5N1/imunologia , Rim , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Testes de Neutralização , Reação em Cadeia da Polimerase , Recombinação Genética , Vírus da Estomatite Vesicular Indiana/crescimento & desenvolvimento , Vacinas Virais/imunologia , Vírion/genética , Vírion/imunologia
19.
J Virol ; 81(11): 5749-58, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17392369

RESUMO

Persistent human papillomavirus (HPV)-associated benign and malignant lesions are a major cause of morbidity and mortality worldwide. Vaccination against HPV early proteins could provide an effective means of treating individuals with established infections. Recombinant vesicular stomatitis virus (VSV) vectors have been used previously to elicit strong humoral and cellular immune responses and develop prophylactic vaccines. We have shown that VSV vectors also can be used to elicit therapeutic immunity in the cottontail rabbit papillomavirus (CRPV)-rabbit model of high-risk HPV infection. In the present study, three new VSV vectors expressing the CRPV E1, E2, or E7 protein were produced and compared to the previously generated VSV-E6 vector for therapeutic efficacy. To determine whether vaccine efficacy could be augmented by simultaneous vaccination against two CRPV proteins, the four vaccines were delivered individually and in all possible pairings to rabbits 1 week after CRPV infection. Control rabbits received the recombinant wild-type VSV vector or medium only. Cumulative papilloma volumes were computed for analysis of the data. The analyses showed that VSV-based vaccination against the E1, E2, E6, or E7 protein significantly reduced papilloma volumes relative to those of the controls. Furthermore, VSV-based CRPV vaccination cured all of the papillomas in 5 of 30 rabbits. Of the individual vaccines, VSV-E7 was the most effective. The VSV-E7 vaccine alone was the most effective, as it reduced cumulative papilloma volumes by 96.9% overall, relative to those of the controls, and ultimately eliminated all of the disease in all of the vaccinees. Vaccine pairing was not, however, found to be beneficial, suggesting antigenic competition between the coexpressed CRPV proteins. These preclinical results, obtained in a physiologically relevant animal model of HPV infection, demonstrate that VSV vectors deserve serious consideration for further development as therapeutic antitumor vaccines.


Assuntos
Papillomavirus de Coelho Cottontail/imunologia , Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/terapia , Fatores de Transcrição/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Animais , Linhagem Celular , Feminino , Cobaias , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/virologia , Coelhos , Fatores de Transcrição/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vírus da Estomatite Vesicular Indiana/genética , Proteínas Virais/genética , Vacinas Virais/genética
20.
Vaccine ; 25(4): 751-62, 2007 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-16962690

RESUMO

Millions of people worldwide are currently infected with human papillomaviruses (HPVs). A therapeutic HPV vaccine would have widespread applicability because HPV-associated lesions are difficult to treat and may progress to carcinoma. We developed three attenuated VSV recombinants expressing the cottontail rabbit papillomavirus (CRPV) early protein E6 for use as vaccines. In cultured cells, two vectors expressed different levels of the E6 protein, and one expressed a ubiquitin-E6 fusion protein. All three were tested for therapeutic efficacy in the cottontail rabbit papillomavirus (CRPV)-rabbit model. Mock vaccination had no effect on papilloma growth. In contrast, inoculation with any of the VSV-E6 vaccines reduced the rate of papilloma growth to as little as 24% the rate in the controls. In five experiments, these effects were achieved after a single immunization. Furthermore, complete papilloma regression occurred in some rabbits observed for 4 months. A VSV-based papillomavirus E6 vaccine could have significant advantages over other therapeutic HPV vaccine candidates described to date.


Assuntos
Proteínas Oncogênicas Virais/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/terapia , Vacinação , Vírus da Estomatite Vesicular Indiana/genética , Vacinas Virais/uso terapêutico , Animais , Feminino , Imunização Secundária , Proteínas Oncogênicas Virais/genética , Coelhos , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...