Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 33(48)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34488208

RESUMO

Silver has been considered as one of the simple one-phase materials that do not exhibit high pressure or high temperature polymorphism. The solid phase of Ag at ambient conditions is face-centered cubic (fcc) one. However, very recently another solid phase of silver, body-centered cubic (bcc) one, was detected in shock-wave (SW) experiments, and a more sophisticated phase diagram of Ag with the two solid phases was published by Smirnov. In this work, using a suite ofab initioquantum molecular dynamics (QMD) simulations based on the Z methodology which combines both direct Z method for the simulation of melting curves and inverse Z method for the calculation of solid-solid phase boundaries, we refine the phase diagram of Smirnov. We calculate the melting curves of both fcc-Ag and bcc-Ag and obtain an equation for the fcc-bcc solid-solid phase transition boundary. We also obtain the thermal equation of state of Ag which is in agreement with experimental data and QMD simulations. We argue that, despite being a polymorphic rather than a simple one-phase material, silver can be considered as an SW standard.

2.
J Phys Condens Matter ; 30(29): 295402, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29873300

RESUMO

The phase diagram of zinc (Zn) has been explored up to 140 GPa and 6000 K, by combining optical observations, x-ray diffraction, and ab initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed (hcp) crystal symmetry up to the melting temperature. The known decrease of the axial ratio (c/a) of the hcp phase of Zn under compression is observed in x-ray diffraction experiments from 300 K up to the melting temperature. The pressure at which c/a reaches [Formula: see text] (≈10 GPa) is slightly affected by temperature. When this axial ratio is reached, we observed that single crystals of Zn, formed at high temperature, break into multiple poly-crystals. In addition, a noticeable change in the pressure dependence of c/a takes place at the same pressure. Both phenomena could be caused by an isomorphic second-order phase transition induced by pressure in Zn. The reported melt curve extends previous results from 24 to 135 GPa. The pressure dependence obtained for the melting temperature is accurately described up to 135 GPa by using a Simon-Glatzel equation: [Formula: see text], where P is the pressure in GPa. The determined melt curve agrees with previous low-pressure studies and with shock-wave experiments, with a melting temperature of 5060(30) K at 135 GPa. Finally, a thermal equation of state is reported, which at room-temperature agrees with the literature.

3.
Artigo em Inglês | MEDLINE | ID: mdl-23496628

RESUMO

We have performed a systematic study of lithium hydride (LiH), using orbital-free molecular dynamics, with a focus on mass transport properties such as diffusion and viscosity by extending our previous studies at the lower end of the warm, dense matter regime to cover a span of densities from ambient to 10-fold compressed and temperatures from 10 eV to 10 keV. We determine analytic formulas for self- and mutual-diffusion coefficients, and viscosity, which are in excellent agreement with our molecular dynamics results, and interpolate smoothly between liquid and dense plasma regimes. In addition, we find the orbital-free calculations begin to agree with the Brinzinskii-Landau formula above about 250 eV at which point the medium becomes fully ionized. A binary-ion model based on a bare Coulomb interaction within a neutralizing background with the effective charges determined from a regularization prescription shows good agreement above about 100 eV with the orbital-free results. Finally, we demonstrate the validity of a pressure-based mixing rule in determining the transport properties from the pure-species quantities.


Assuntos
Compostos de Lítio/química , Modelos Químicos , Gases em Plasma/química , Simulação por Computador , Difusão , Viscosidade
4.
Phys Rev Lett ; 104(25): 255702, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867396

RESUMO

Phase diagrams of refractory metals remain essentially unknown. Moreover, there is an ongoing controversy over the high-pressure melting temperatures of these metals: results of diamond anvil cell (DAC) and shock wave experiments differ by at least a factor of 2. From an extensive ab initio study on tantalum we discovered that the body-centered cubic phase, its physical phase at ambient conditions, transforms to another solid phase, possibly hexagonal omega phase, at high temperature. Hence the sample motion observed in DAC experiments is very likely not due to melting but internal stresses accompanying a solid-solid transformation, and thermal stresses associated with laser heating.

5.
Phys Rev Lett ; 100(13): 135701, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18517968

RESUMO

The Gibbs free energies of bcc and fcc Mo are calculated from first principles in the quasiharmonic approximation in the pressure range from 350 to 850 GPa at room temperatures up to 7500 K. It is found that Mo, stable in the bcc phase at low temperatures, has lower free energy in the fcc structure than in the bcc phase at elevated temperatures. Our density-functional-theory-based molecular dynamics simulations demonstrate that fcc melts at higher than bcc temperatures above 1.5 Mbar. Our calculated melting temperatures and bcc-fcc boundary are consistent with the Mo Hugoniot sound speed measurements. We find that melting occurs at temperatures significantly above the bcc-fcc boundary. This suggests an explanation of the recent diamond anvil cell experiments, which find a phase boundary in the vicinity of our extrapolated bcc-fcc boundary.

6.
Phys Rev Lett ; 94(19): 195701, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-16090187

RESUMO

The melting curve of MgSiO(3) perovskite has been determined by means of ab initio molecular dynamics complemented by effective pair potentials, and a new phenomenological model of melting. Using first principles ground state calculations, we find that the MgSiO(3) perovskite phase transforms into post perovskite at pressures above 100 GPa, in agreement with recent theoretical and experimental studies. We find that the melting curve of MgSiO(3), being very steep at pressures below 60 GPa, rapidly flattens on increasing pressure. The experimental controversy on the melting of the MgSiO(3) perovskite at high pressures is resolved, confirming the data by Zerr and Boehler.

7.
Phys Rev Lett ; 92(19): 195701, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15169417

RESUMO

The melting curve of the body-centered cubic (bcc) phase of Mo has been determined for a wide pressure range using both direct ab initio molecular dynamics simulations of melting as well as a phenomenological theory of melting. These two methods show very good agreement. The simulations are based on density functional theory within the generalized gradient approximation. Our calculated equation of state of bcc Mo is in excellent agreement with experimental data. However, our melting curve is substantially higher than the one determined in diamond anvil cell experiments up to a pressure of 100 GPa. An explanation is suggested for this discrepancy.

8.
Phys Rev Lett ; 90(9): 095701, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12689238

RESUMO

The microscopic mechanism of the melting of a crystal is analyzed by the constant-pressure Monte Carlo simulation of a Lennard-Jones fcc system. Beyond a temperature of the order of 0.8 of the melting temperature, we found that the relevant excitations are lines of defects. Each of these lines has the structure of a random walk of various lengths on an fcc defect lattice. We identify these lines with the dislocation ones proposed in recent phenomenological theories of melting. Near melting we find the appearance of long lines that cross the whole system. We suggest that these long lines are the precursor of the melting process.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(6 Pt 2): 067402, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11415261

RESUMO

The melting parameter Gamma(m) of a classical one-component plasma is estimated using a relation between the melting temperature, density, shear modulus, and a crystal coordination number that follows from our model of dislocation-mediated melting. We obtain gamma(m)=172+/-35, in good agreement with the results of numerous Monte Carlo calculations.

10.
Phys Rev D Part Fields ; 54(6): 4029-4038, 1996 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10021081
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...