Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 14(12): 8434-8444, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38476175

RESUMO

A chiral organic insulator, (R)-α-phenylethylammonium-oxalate (RAPEAO), was prepared in the forms of single-crystal, powder and spin-coated layers on silicon substrate surfaces modified by plasma treatment or a (3-aminopropyl)triethoxysilane (APTES) polymer layer. For spin-coated samples, different deposition conditions have been investigated - various thicknesses controlled by speed and the number of repeated cycles, deposited continuously or by a layer-by-layer technique. The chemistry of this compound did not allow the deposition of the continuous thin film, yet, it caused the formation of a few nuclei on the substrate surface. Modification of the substrate with low temperature plasma caused the increased number of nuclei as well as enabled the growth of the nanowires, which was confirmed by atomic force microscopy (AFM) images. The same effect has been observed from the X-ray diffraction (XRD) measurements, where preferential growth of the studied compound in one direction was confirmed by grazing incidence, as well as wide reciprocal space mapping (WRSM). XRD studies confirmed the structural similarity of the compound, disregarding the compound form ranging from nanowires on the substrate to the bulk. Finally, the substrate covered by APTES thin film has had increased coverage of the substrate surface by the studied compound. Impedance spectroscopy revealed that the electrical conductivity of the sample in bulk at 20 °C is 6.3 × 10-15 (Ω cm)-1, indicating the insulating properties of the material.

2.
Inorg Chem ; 62(24): 9418-9428, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37290133

RESUMO

Two heterometallic coordination polymers {[NH(CH3)2(C2H5)]8[Mn4Cl4Cr4(C2O4)12]}n (1) and {[NH(CH3)-(C2H5)2]8[Mn4Cl4Cr4(C2O4)12]}n (2) were obtained by slow evaporation of an aqueous solution containing the building block [A]3[Cr(C2O4)3] [A = (CH3)2(C2H5)NH+ or (CH3)(C2H5)2NH+] and MnCl2·2H2O. The isostructural compounds comprise irregular two-dimensional (2D) oxalate-bridged anionic layers [Mn4Cl4Cr4(C2O4)12]n8n- with a Shubnikov plane net fes topology designated as (4·82), interleaved by the hydrogen-bonded templating cations (CH3)2(C2H5)NH+ (1) or (CH3)(C2H5)2NH+ (2). They exhibit remarkable humidity-sensing properties and very high proton conductivity at room temperature [1.60 × 10-3 (Ω·cm)-1 at 90% relative humidity (RH) of 1 and 9.6 × 10-4 (Ω·cm)-1 at 94% RH of 2]. The layered structure facilitates the uptake of water molecules, which contributes to the enhancement of proton conductivity at high RH. The better proton transport observed in 1 compared to that in 2 can be tentatively attributed to the higher hydrophilicity of the cations (CH3)2(C2H5)NH+, which is closely related to their affinity for water molecules. The original topology of the anionic networks in both compounds leads to the development of interesting magnetic phases upon cooling. The magnetically ordered ground state can be described as the coupling of ferromagnetic spin chains in which Mn2+ and Cr3+ ions are bridged by bis(bidentate) oxalate groups into antiferromagnetic planes through monodentate-bidentate oxalate bridges in the layers, which are triggered to long-range order below temperature 4.45 K via weaker interlayer interactions.

3.
J Mater Sci ; 57(25): 11563-11581, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35789923

RESUMO

This work describes temperature-induced crystallization processes and reaction mechanisms occurring in the borohydride-imidazolate system. In the course of thermal evolution, crystal structures of two novel bimetallic imidazolates AMnIm3 (A = Na, K) were solved using synchrotron radiation powder diffraction data. Both the alkali metal cation and the Mn cations exhibit distorted octahedral coordination while each imidazolate is surrounded by two alkali metal and two manganese atoms. Extensive study of the thermal expansion behaviour revealed that the expansion of the bimetallic imidazolates does not proceed uniformly over the entire temperature range but rather abruptly changes from a colossal negative to a moderate positive volume expansion. Such behaviour is caused by the coherent intergrowth of the coexisting phases which form a composite, a positive lattice mismatch and a tensile strain during the coexistence of NaMIm3 (M = Mg and Mn) and NaIm or HT-NaIm. Such coherent coalescence of two materials opens the possibility for targeted design of zero thermal expansion materials. Graphical abstract: Crystal structures of AMnIm3 (A = Na, K) were determined. Coherently intergrown NaMIm3/NaIm (M = Mg, Mn) present colossal negative thermal expansion. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07360-z.

4.
Materials (Basel) ; 14(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34639934

RESUMO

A novel one-dimensional (1D) oxalate-bridged coordination polymer of iron(III), {[NH(CH3)(C2H5)2][FeCl2(C2O4)]}n (1), exhibits remarkable humidity-sensing properties and very high proton conductivity at room temperature (2.70 × 10-4 (Ω·cm)-1 at 298 K under 93% relative humidity), in addition to the independent antiferromagnetic spin chains of iron(III) ions bridged by oxalate groups (J = -7.58(9) cm-1). Moreover, the time-dependent measurements show that 1 could maintain a stable proton conductivity for at least 12 h. Charge transport and magnetic properties were investigated by impedance spectroscopy and magnetization measurements, respectively. Compound 1 consists of infinite anionic zig-zag chains [FeCl2(C2O4)]nn- and interposed diethylmethylammonium cations (C2H5)2(CH3)NH+, which act as hydrogen bond donors toward carbonyl oxygen atoms. Extraordinarily, the studied coordination polymer exhibits two reversible phase transitions: from the high-temperature phase HT to the mid-temperature phase MT at T ~213 K and from the mid-temperature phase MT to the low-temperature phase LT at T ~120 K, as revealed by in situ powder and single-crystal X-ray diffraction. All three polymorphs show large linear thermal expansion coefficients.

5.
Nanomaterials (Basel) ; 10(12)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333789

RESUMO

High electronically conductive tungsten phosphate glass-ceramics have been prepared by the controlled crystallization of binary 60WO3-40P2O5 glass in the temperature range from 700 to 935 °C and for 1 to 24 h. The substantial increase in the conductivity for four orders of magnitude is a result of the formation of electronically conductive W2O3(PO4)2 and WO3 phases. At low crystallization temperature the dominant W2O3(PO4)2 phase is created, whereas at 935 °C for 24 h the formation of semiconducting WO3 crystallites of an average size of 80 nm enhances the conductivity to the highest value of 1.64 × 10-4 (Ω cm)-1 at 30 °C. The course of the crystallization and its impact on this exceptionally high electronic transport of binary tungsten phosphate glass-ceramics has been discussed in detail. Since such highly electronically conductive WO3-based glass-ceramics have a great potential as cathode/anode materials in solid state batteries and as electrocatalysts in fuel cells, it is of interest to provide a novel insight into the improvement of their electrical properties.

6.
Inorg Chem ; 59(10): 6876-6883, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32330029

RESUMO

A molecule-based ferroelectric triethylmethylammonium tetrachloroferrate(III) ([N(C2H5)3CH3][FeCl4]) powder was designed as a multifunctional material exhibiting excellent multiple bistability. Prepared by the slow evaporation method at room temperature, the compound crystallizes in the non-centrosymmetric assembly of hexagonal symmetry (P63mc space group) which undergoes a reversible temperature-triggered phase transition pinpointed at 363 K to the centrosymmetric packing within the P63/mmc space group. Aside from the inseparable role of the symmetry-breaking process smoothly unveiled from the X-ray powder diffraction data, a striking change in the dielectric permittivity observed during the paraelectric-to-ferroelectric phase transition directly discloses the bistable dielectric behavior-an exceptionally high increase in the dielectric permittivity of about 360% at 100 kHz across the heating and cooling cycles is direct proof showing the highly desirable stimuli-responsive electric ordering in this improper ferroelectric architecture. Due to the magnetically modulated physical properties resulting in the coupling of magnetic and electric orderings, the flexible assembly of [N(C2H5)3CH3][FeCl4] could be used to boost the design and development of novel magnetoelectric devices.

7.
Inorg Chem ; 58(10): 6927-6933, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31050419

RESUMO

The first bimetallic imidazolates containing alkali and alkaline earth metals, NaMgIm3 and KMgIm3, respectively, are prepared by mechanochemical synthesis and are reported in this paper. NaMgIm3 has been prepared by the reaction between NaIm and Mg(BH4)2 as well as directly from NaIm and MgIm2. Structural evolution and thermal stability were followed by an in situ high-temperature X-ray powder diffraction experiment utilizing synchrotron radiation. In both compounds, the imidazolate ligand is connected to four metal cations forming a complex three-dimensional network with channels running along the c-direction. NaMgIm3 and KMgIm3 are the first members of a new family of imidazolate frameworks with stp topology. The formation of mixed-alkali-metal imidazolate compounds is thermodynamically controlled. LiIm and MgIm2 have not yielded a mixed-metal compound, while KIm reacts swiftly and forms KMgIm3.

8.
Nanotechnology ; 28(45): 455401, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29057755

RESUMO

Cation distribution between tetrahedral and octahedral sites within the ZnMn2O4 spinel lattice, along with microstructural features, is affected greatly by the temperature of heat treatment. Inversion parameters can easily be tuned, from 5%-19%, depending on the annealing temperature. The upper limit of inversion is found for T = 400 °C as confirmed by x-ray powder diffraction and Raman spectroscopy. Excellent battery behavior is found for samples annealed at lower temperatures; after 500 cycles the specific capacity for as-prepared ZnMn2O4 is 909 mAh g-1, while ZnMn2O4 heat-treated at 300 °C is 1179 mAh g-1, which amounts to 101% of its initial capacity. Despite the excellent performance of a sample processed at 300 °C at lower charge/discharge rates (100 mAh g-1), a drop in the specific capacity is observed with rate increase. This issue is solved by graphene-oxide wrapping: the specific capacity obtained after the 400th cycle for graphene-oxide-wrapped ZnMn2O4 heat-treated at 300 °C is 799 mAh g-1 at a charge/discharge rate 0.5 A g-1, which is higher by a factor of 6 compared to samples without graphene -oxide wrapping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...