Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38793389

RESUMO

To perform quality assessments of both metal alloys and many other engineering materials, measurements of the volume fractions of phases or microstructure components are utilized. For this purpose, quantitative analysis of the evaluated components' distribution on metallographic specimens is often employed. Phases or components of the microstructure are identified based on the variation in signal received in the band of light seen. Problems with the correct identification of measurement results in this spectral band can be caused by the inhomogeneity of the etching when the alloy components are segregated. Additional uncertainty arises when the analyzed image pixel contains a boundary between grains of different phases. This article attempts to use the results of local chemical composition measurements as a source signal for quantitative evaluation of phase composition. For this purpose, quantitative maps of elemental concentration distributions, obtained with a Tescan Mira GMU high-resolution scanning electron microscope in QuantMap mode, were used as input data for the phase composition evaluation of an EN AC 46000 alloy sample. The X-ray microanalysis signal generation area may contain grains of more than one phase. Therefore, evaluation of the phase fractions in areas of individual measurements were calculated by looking for the minimum of the objective function, calculated as the sum of the squares of the deviations of the results of measurements of the concentration of individual elements from the weighted average values of solubilities of these elements in the phases.

2.
Materials (Basel) ; 16(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37110053

RESUMO

The treatment of inoculation of white cast iron with carbide precipitations that consist of increasing the number of primary austenite grains is not as well-known as the treatment of inoculation of gray cast iron in which the number of eutectic grains increases. In the studies included in the publication, experiments were carried out using the addition of ferrotitanium as an inoculant for chromium cast iron. The Cellular Automaton Finite Elements (CAFE) module of ProCAST software was used in order to analyze the formation of the primary structure of hypoeutectic chromium cast iron in a casting of various thicknesses. The modeling results were verified using Electron Back-Scattered Diffraction (EBSD) imaging. The obtained results confirmed obtaining a variable number of primary austenite grains in the cross-section of the tested casting, which significantly affects the strength properties of the obtained chrome cast iron casting.

3.
Materials (Basel) ; 15(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36013838

RESUMO

The paper presents the results of the research on the impact of process parameters of high-pressure, cold-chamber die casting of an industrial casting made of aluminium alloy on the casting properties assessed macroscopically by measuring the casting average density and microscopically through the characteristics of the casting microstructure. The analysis covers the influence of three selected velocity settings of the pressing plunger, which determine the filling time, and three values of the compression pressure setting characteristic of the third phase of the casting process. The cooling and solidification simulations of the casting were performed using the ProCAST software. During the simulation tests, the impact of the filling rate of the alloy into the die cavity on the cooling rate and the alloy solidification path at selected points were determined. The conducted research allowed linking the process parameters with the parameters of the casting structure with different wall thicknesses. Metallographic examinations of the castings were carried out using a light microscopy, SEM, and EDS analysis. The fraction of the phases α(Al), the size of dendritic cells, and the size of silicon particles, in the cross-sections of the castings with wall thickness of 3, 6, and 11 mm, respectively, were determined.

4.
Materials (Basel) ; 15(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897566

RESUMO

This article presents the results of shape-dependent strength analyses in die-castings from traditional (straight-drilled) and conformal core-cooling moulds. Cores with a traditional cooling layout were made of H13 steel using machining, and the working sections of the conformal cores were made using the selective laser melting method (SLM). Two series of casts were produced in the same mould. For Series A, the mould was fitted with traditional cooling cores, and for Series B, the same mould was fitted with conformal ones. The cast specimens were subjected to two weeks of natural ageing. The strength testing of the casts determined the levels of the destructive forces. The destructive forces in the core-cooling impact zones were approximately 28% higher in the B samples than they were in the A samples. The impact of the alloy's porosity, density, and microstructure on the strengths of the casts was demonstrated. The alloy densities in the central (broken-off) fragments of the casts from Series A were 2.6646 g/cm3; these were 2.6791 g/cm3 in the cases of casts from Series B. The values of the secondary dendrite arm space (SDAS) ranged from 6 to 13 µm in the analysed cross-section of the set of the A casts, and between 3 and 12 µm in the same zone of the set of the B casts. The results of the experimental determinations of the casts porosity levels and SDAS parameters were compared with the results of numerical simulations that were carried out in ProCAST software.

5.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614706

RESUMO

This paper presents the results of a stress analysis and fatigue life calculation of an HPDC mould core. The calculations were performed using Abaqus and fe-safe software. The numerical model of a core cooled by a conformal channel was based on an existing and working counterpart made of additively manufactured high-strength 1.2709 maraging steel. This study shows that the conformal channel results in a lower average core temperature as compared to the temperature of the same core shape cooled by the conventional method. The course of the stress changes during the mould cycle was also determined. It was found that stresses on the core surface caused the cyclic compression and tension of the material. The necessary strength tests of 1.2709 steel produced by selective laser melting (SLM) within a temperature range of 25 to 550 °C, which were necessary to define the fatigue coefficients by the Seeger approximation method, were also carried out in this study, along with metallographic tests of the fractures of the specimens. Based on the multiaxial fatigue criterion and using the maximum principal deformation hypothesis, the fatigue life of the core and channel surfaces was determined. Based on the calculations, it was shown that crack initiation on the channel surface can occur earlier than on the outer surface of the core.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...