Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Phys ; 107(1): 18-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24849901

RESUMO

A radiological concern for workers at heavy water reactor nuclear facilities is the hazard presented by tritium (H) and C. Radioactive methane is one of many potential H and C containing chemicals to which Nuclear Energy Workers (NEWs) may be exposed. Current dosimetric models for H- and C-methane, recommended by the International Commission on Radiological Protection (ICRP), are based on the assumption that 1% of methane is absorbed following its inhalation. Of this 1%, all H is converted immediately to tritiated water and C is converted immediately to CO2 (50%) and organically bound carbon (50%). In the study, rats were exposed to methane standards (H-methane and C-methane) mixed with breathing air to give a final concentration of 0.27% methane and resulting in final activity concentrations of 4.2 GBq m and 0.88 GBq m for H and C, respectively. This corresponds to exposure estimates of 580 kBq g and 120 kBq g. Simultaneous exposure to H- and C-methane allowed for the direct comparison of the retention of these radionuclides and removed uncertainties concerning their relative uptake and retention. The results demonstrate that the total methane uptake from the inhaled dose was threefold less than the 1% methane uptake predicted by the ICRP dosimetric models for H- and C-methane, with the H concentration being substantially higher than anticipated in the liver. This study provided data suggesting that current ICRP dosimetric methane models overestimate the fraction of H- and C-methane that is absorbed following inhalation and assisted in providing information to better understand the metabolism of inhaled H and C radiolabeled methane.


Assuntos
Radioisótopos de Carbono , Metano/farmacocinética , Trítio , Administração por Inalação , Animais , Humanos , Fígado/metabolismo , Metano/administração & dosagem , Doses de Radiação , Ratos , Ratos Sprague-Dawley
2.
Radiat Res ; 173(1): 40-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20041758

RESUMO

This report tests the hypotheses that cancer proneness elevates risk from a high radiation exposure and that the risk response to high doses is qualitatively similar to that from low doses. Groups of about 170 female mice heterozygous for Trp53 (Trp53(+/-)) and their normal female littermates (Trp53(+/+)) were exposed at 7-8 weeks of age to (60)Co gamma-radiation doses of 0, 1, 2, 3 or 4 Gy at a high dose rate (0.5 Gy/min) or 4 Gy at a low dose rate (0.5 mGy/min). In the absence of radiation exposure, Trp53 heterozygosity reduced life span approximately equally for death from either cancer or non-cancer disease. Heterozygosity alone produced a 1.5-fold greater shortening of life span than a 4-Gy acute exposure. Per unit dose, life shortening from cancer or non-cancer disease was the same for normal mice and Trp53 heterozygous animals, indicating that, contrary to previous reports, Trp53 heterozygosity did not confer radiation sensitivity to high doses of gamma rays. In Trp53(+/-) mice with cancer, life shortening from acute doses up to 4 Gy was related to both increased tumor formation and decreased tumor latency. A similar tumor response was observed in normal mice, but only up to 2 Gy, indicating that above 2 Gy, normal Trp53 function protected against tumor initiation, and further life shortening reflected only decreased latency for cancer and non-cancer disease. Dose-rate reduction factors were 1.7-3.0 for both genotypes and all end points. We conclude that Trp53 gene function influences both cancer and non-cancer mortality in unexposed female mice and that Trp53-associated cancer proneness in vivo is not correlated with elevated radiation risk. Increased risk from high acute radiation doses contrasts with the decreased risk seen previously after low doses of radiation in both Trp53 normal and heterozygous female mice.


Assuntos
Predisposição Genética para Doença , Heterozigoto , Neoplasias Induzidas por Radiação/genética , Doses de Radiação , Proteína Supressora de Tumor p53/genética , Animais , Relação Dose-Resposta à Radiação , Feminino , Hemangiossarcoma/genética , Hemangiossarcoma/fisiopatologia , Longevidade/genética , Longevidade/efeitos da radiação , Linfoma/genética , Linfoma/fisiopatologia , Masculino , Camundongos , Neoplasias Induzidas por Radiação/fisiopatologia , Tolerância a Radiação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...