Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35743167

RESUMO

The transcription factor PU.1 (Purine-rich DNA binding, SPI1) is a key regulator of hematopoiesis, whose level is influenced by transcription through its enhancers and its post-transcriptional degradation via microRNA-155 (miR-155). The degree of transcriptional regulation of the PU.1 gene is influenced by repression via DNA methylation, as well as other epigenetic factors, such as those related to progenitor maturation status, which is modulated by the transcription factor Myeloblastosis oncogene (MYB). In this work, we show that combinatorial treatment of acute myeloid leukemia (AML) cells with DNA methylation inhibitors (5-Azacytidine), MYB inhibitors (Celastrol), and anti-miR-155 (AM155) ideally leads to overproduction of PU.1. We also show that PU.1 reactivation can be compensated by miR-155 and that only a combined approach leads to sustained PU.1 derepression, even at the protein level. The triple effect on increasing PU.1 levels in myeloblasts stimulates the myeloid transcriptional program while inhibiting cell survival and proliferation, leading to partial leukemic differentiation.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Diferenciação Celular/genética , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
3.
Front Oncol ; 11: 744373, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616685

RESUMO

Somatic mutations are a common molecular mechanism through which chronic myeloid leukemia (CML) cells acquire resistance to tyrosine kinase inhibitors (TKIs) therapy. While most of the mutations in the kinase domain of BCR-ABL1 can be successfully managed, the recurrent somatic mutations in other genes may be therapeutically challenging. Despite the major clinical relevance of mutation-associated resistance in CML, the mechanisms underlying mutation acquisition in TKI-treated leukemic cells are not well understood. This work demonstrated de novo acquisition of mutations on isolated single-cell sorted CML clones growing in the presence of imatinib. The acquisition of mutations was associated with the significantly increased expression of the LIG1 and PARP1 genes involved in the error-prone alternative nonhomologous end-joining pathway, leading to genomic instability, and increased expression of the UNG, FEN and POLD3 genes involved in the base-excision repair (long patch) pathway, allowing point mutagenesis. This work showed in vitro and in vivo that de novo acquisition of resistance-associated mutations in oncogenes is the prevalent method of somatic mutation development in CML under TKIs treatment.

4.
Blood ; 132(22): 2389-2400, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30213873

RESUMO

Follicular lymphoma (FL) is a common indolent B-cell malignancy with a variable clinical course. An unfavorable event in its course is histological transformation to a high-grade lymphoma, typically diffuse large B-cell lymphoma. Recent studies show that genetic aberrations of MYC or its overexpression are associated with FL transformation (tFL). However, the precise molecular mechanisms underlying tFL are unclear. Here we performed the first profiling of expression of microRNAs (miRNAs) in paired samples of FL and tFL and identified 5 miRNAs as being differentially expressed. We focused on one of these miRNAs, namely miR-150, which was uniformly downmodulated in all examined tFLs (∼3.5-fold), and observed that high levels of MYC are responsible for repressing miR-150 in tFL by binding in its upstream region. This MYC-mediated repression of miR-150 in B cells is not dependent on LIN28A/B proteins, which influence the maturation of miR-150 precursor (pri-miR-150) in myeloid cells. We also demonstrated that low miR-150 levels in tFL lead to upregulation of its target, namely FOXP1 protein, which is a known positive regulator of cell survival, as well as B-cell receptor and NF-κB signaling in malignant B cells. We revealed that low levels of miR-150 and high levels of its target, FOXP1, are associated with shorter overall survival in FL and suggest that miR-150 could serve as a good biomarker measurable in formalin-fixed paraffin-embedded tissue. Overall, our study demonstrates the role of the MYC/miR-150/FOXP1 axis in malignant B cells as a determinant of FL aggressiveness and its high-grade transformation.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Folicular/genética , MicroRNAs/genética , Proteínas Repressoras/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação para Baixo , Humanos , Linfoma Folicular/diagnóstico , Linfoma Folicular/patologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-myc/genética , Ativação Transcricional , Regulação para Cima
5.
Haematologica ; 103(12): 2016-2025, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30049824

RESUMO

The fusion oncoprotein BCR-ABL1 exhibits aberrant tyrosine kinase activity and it has been proposed that it deregulates signaling networks involving both transcription factors and non-coding microRNAs that result in chronic myeloid leukemia (CML). Previously, microRNA expression profiling showed deregulated expression of miR-150 and miR-155 in CML. In this study, we placed these findings into the broader context of the MYC/miR-150/MYB/miR-155/PU.1 oncogenic network. We propose that up-regulated MYC and miR-155 in CD34+ leukemic stem and progenitor cells, in concert with BCR-ABL1, impair the molecular mechanisms of myeloid differentiation associated with low miR-150 and PU.1 levels. We revealed that MYC directly occupied the -11.7 kb and -0.35 kb regulatory regions in the MIR150 gene. MYC occupancy was markedly increased through BCR-ABL1 activity, causing inhibition of MIR150 gene expression in CML CD34+ and CD34- cells. Furthermore, we found an association between reduced miR-150 levels in CML blast cells and their resistance to tyrosine kinase inhibitors (TKIs). Although TKIs successfully disrupted BCR-ABL1 kinase activity in proliferating CML cells, this treatment did not efficiently target quiescent leukemic stem cells. The study presents new evidence regarding the MYC/miR-150/MYB/miR-155/PU.1 leukemic network established by aberrant BCR-ABL1 activity. The key connecting nodes of this network may serve as potential druggable targets to overcome resistance of CML stem and progenitor cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/genética , Genes myc/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , MicroRNAs/genética , Adulto , Idoso , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Inibidores de Proteínas Quinases/farmacologia
6.
Biochim Biophys Acta ; 1859(12): 1515-1526, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27693117

RESUMO

DNMT1 is the maintenance DNA methyltransferase shown to be essential for embryonic development and cellular growth and differentiation in many somatic tissues in mammals. Increasing evidence has also suggested a role for DNMT1 in repressing gene expression through interactions with specific transcription factors. Previously, we identified DNMT1 as an interacting partner of the TR2/TR4 nuclear receptor heterodimer in erythroid cells, implicated in the developmental silencing of fetal ß-type globin genes in the adult stage of human erythropoiesis. Here, we extended this work by using a biotinylation tagging approach to characterize DNMT1 protein complexes in mouse erythroleukemic cells. We identified novel DNMT1 interactions with several hematopoietic transcription factors with essential roles in erythroid differentiation, including GATA1, GFI-1b and FOG-1. We provide evidence for DNMT1 forming distinct protein subcomplexes with specific transcription factors and propose the existence of a "core" DNMT1 complex with the transcription factors ZBP-89 and ZNF143, which is also present in non-hematopoietic cells. Furthermore, we identified the short (17a.a.) PCNA Binding Domain (PBD) located near the N-terminus of DNMT1 as being necessary for mediating interactions with the transcription factors described herein. Lastly, we provide evidence for DNMT1 serving as a co-repressor of ZBP-89 and GATA1 acting through upstream regulatory elements of the PU.1 and GATA1 gene loci.


Assuntos
Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferases/genética , Complexos Multiproteicos/metabolismo , Fatores de Transcrição/genética , Animais , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Eritroides/química , Células Eritroides/metabolismo , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Complexos Multiproteicos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
7.
PLoS One ; 11(3): e0152234, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27010793

RESUMO

GATA-1 and PU.1 are two important hematopoietic transcription factors that mutually inhibit each other in progenitor cells to guide entrance into the erythroid or myeloid lineage, respectively. PU.1 controls its own expression during myelopoiesis by binding to the distal URE enhancer, whose deletion leads to acute myeloid leukemia (AML). We herein present evidence that GATA-1 binds to the PU.1 gene and inhibits its expression in human AML-erythroleukemias (EL). Furthermore, GATA-1 together with DNA methyl Transferase I (DNMT1) mediate repression of the PU.1 gene through the URE. Repression of the PU.1 gene involves both DNA methylation at the URE and its histone H3 lysine-K9 methylation and deacetylation as well as the H3K27 methylation at additional DNA elements and the promoter. The GATA-1-mediated inhibition of PU.1 gene transcription in human AML-EL mediated through the URE represents important mechanism that contributes to PU.1 downregulation and leukemogenesis that is sensitive to DNA demethylation therapy.


Assuntos
Fator de Transcrição GATA1/genética , Leucemia Eritroblástica Aguda/genética , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Diferenciação Celular/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/genética , Elementos Facilitadores Genéticos , Fator de Transcrição GATA1/metabolismo , Regulação Leucêmica da Expressão Gênica , Histonas/genética , Humanos , Leucemia Eritroblástica Aguda/patologia , Leucemia Mieloide Aguda/patologia , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/biossíntese , Transativadores/metabolismo , Transcrição Gênica
8.
BMC Cancer ; 14: 448, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24938880

RESUMO

BACKGROUND: MicroRNAs (miRs) represent a distinct class of posttranscriptional modulators of gene expression with remarkable stability in sera. Several miRs are oncogenic (oncomiRs) and are deregulated in the pathogenesis of breast cancer and function to inhibit tumor suppressors. Routine blood monitoring of these circulating tumor-derived products could be of significant benefit to the diagnosis and relapse detection of early-stage breast cancer (EBC) patients. METHODS: Aim of this project was to determine expression of miR-155, miR-19a, miR-181b, miR-24, relative to let-7a in sera of 63 patients with EBC and 21 healthy controls. Longitudinal multivariate data analysis was performed to stochastically model the serum levels of each of the oncomiRs during disease phases: from diagnosis, after surgery, and following chemo/radiotherapy. Moreover, this analysis was utilized to evaluate oncomiR levels in EBC patients subgrouped using current clinical prognostic factors including HER2, Ki-67, and grade III. RESULTS: EBC patients significantly over-express the oncomiRs at the time of diagnosis. Following surgical resection the serum levels of miR-155, miR-181b, and miR-24 significantly decreased (p = 1.89e-05, 5.41e-06, and 0.00638, respectively) whereas the miR-19a decreased significantly after the therapy (p = 0.00869). Furthermore, in case of high-risk patients serum levels of miR-155, miR-19a, miR-181b, and miR-24 are significantly more abundant in comparison to low-risk group (p = 0.026, 0.02567, 0.0250, and 0.00990) and show a decreasing trend upon therapy. CONCLUSIONS: OncomiRs are significantly more abundant in the sera of EBC patients compared to controls at diagnosis. Differences in oncomiR levels reflecting EBC risk were also observed. Testing the oncomiRs may be useful for diagnostic purpose and possibly also for relapse detection in follow-up studies of EBC.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , MicroRNAs/sangue , MicroRNAs/genética , Adulto , Idoso , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Neoplasias da Mama/terapia , Estudos de Casos e Controles , Feminino , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico
9.
Mol Cancer ; 10: 41, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21501493

RESUMO

BACKGROUND: MicroRNAs are important regulators of transcription in hematopoiesis. Their expression deregulations were described in association with pathogenesis of some hematological malignancies. This study provides integrated microRNA expression profiling at different phases of chronic myeloid leukemia (CML) with the aim to identify microRNAs associated with CML pathogenesis. The functions of in silico filtered targets are in this report annotated and discussed in relation to CML pathogenesis. RESULTS: Using microarrays we identified differential expression profiles of 49 miRNAs in CML patients at diagnosis, in hematological relapse, therapy failure, blast crisis and major molecular response. The expression deregulation of miR-150, miR-20a, miR-17, miR-19a, miR-103, miR-144, miR-155, miR-181a, miR-221 and miR-222 in CML was confirmed by real-time quantitative PCR. In silico analyses identified targeted genes of these miRNAs encoding proteins that are involved in cell cycle and growth regulation as well as several key signaling pathways such as of mitogen activated kinase-like protein (MAPK), epidermal growth factor receptor (EGFR, ERBB), transforming growth factor beta (TGFB1) and tumor protein p53 that are all related to CML. Decreased levels of miR-150 were detected in patients at diagnosis, in blast crisis and 67% of hematological relapses and showed significant negative correlation with miR-150 proved target MYB and with BCR-ABL transcript level. CONCLUSIONS: This study uncovers microRNAs that are potentially involved in CML and the annotated functions of in silico filtered targets of selected miRNAs outline mechanisms whereby microRNAs may be involved in CML pathogenesis.


Assuntos
Regulação Leucêmica da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/fisiopatologia , MicroRNAs/metabolismo , Análise por Conglomerados , Regulação para Baixo/genética , Feminino , Perfilação da Expressão Gênica , Genes myb/genética , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Masculino , MicroRNAs/genética , Anotação de Sequência Molecular , Reprodutibilidade dos Testes
10.
Blood ; 117(14): 3816-25, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21296997

RESUMO

Elevated levels of microRNA miR-155 represent a candidate pathogenic factor in chronic B-lymphocytic leukemia (B-CLL). In this study, we present evidence that MYB (v-myb myeloblastosis viral oncogene homolog) is overexpressed in a subset of B-CLL patients. MYB physically associates with the promoter of miR-155 host gene (MIR155HG, also known as BIC, B-cell integration cluster) and stimulates its transcription. This coincides with the hypermethylated histone H3K4 residue and spread hyperacetylation of H3K9 at MIR155HG promoter. Our data provide evidence of oncogenic activities of MYB in B-CLL that include its stimulatory role in MIR155HG transcription.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , Proteínas Oncogênicas v-myb/fisiologia , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células HeLa , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Análise em Microsséries , Proteínas Oncogênicas v-myb/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Transcrição Gênica/fisiologia , Transfecção , Células Tumorais Cultivadas
11.
Mol Cancer Res ; 7(10): 1693-703, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19825991

RESUMO

Hematopoietic transcription factors GATA-1 and PU.1 bind each other on DNA to block transcriptional programs of undesired lineage during hematopoietic commitment. Murine erythroleukemia (MEL) cells that coexpress GATA-1 and PU.1 are blocked at the blast stage but respond to molecular removal (downregulation) of PU.1 or addition (upregulation) of GATA-1 by inducing terminal erythroid differentiation. To test whether GATA-1 blocks PU.1 in MEL cells, we have conditionally activated a transgenic PU.1 protein fused with the estrogen receptor ligand-binding domain (PUER), resulting in activation of a myeloid transcriptional program. Gene expression arrays identified components of the PU.1-dependent transcriptome negatively regulated by GATA-1 in MEL cells, including CCAAT/enhancer binding protein alpha (Cebpa) and core-binding factor, beta subunit (Cbfb), which encode two key hematopoietic transcription factors. Inhibition of GATA-1 by small interfering RNA resulted in derepression of PU.1 target genes. Chromatin immunoprecipitation and reporter assays identified PU.1 motif sequences near Cebpa and Cbfb that are co-occupied by PU.1 and GATA-1 in the leukemic blasts. Significant derepression of Cebpa and Cbfb is achieved in MEL cells by either activation of PU.1 or knockdown of GATA-1. Furthermore, transcriptional regulation of these loci by manipulating the levels of PU.1 and GATA-1 involves quantitative increases in a transcriptionally active chromatin mark: acetylation of histone H3K9. Collectively, we show that either activation of PU.1 or inhibition of GATA-1 efficiently reverses the transcriptional block imposed by GATA-1 and leads to the activation of a myeloid transcriptional program directed by PU.1.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Transformação Celular Neoplásica/genética , Subunidade beta de Fator de Ligação ao Core/genética , Fator de Transcrição GATA1/genética , Leucemia/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Transformação Celular Neoplásica/metabolismo , Subunidade beta de Fator de Ligação ao Core/metabolismo , Fator de Transcrição GATA1/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Leucemia/metabolismo , Leucemia/fisiopatologia , Células Mieloides/metabolismo , Interferência de RNA , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Elementos Reguladores de Transcrição/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...