Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 1: 15009, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28725713

RESUMO

BACKGROUND: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. AIMS: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. METHODS: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. RESULTS: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. CONCLUSIONS: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...