Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609185

RESUMO

Background: Developing non-invasive delivery platforms with a high level of structural and/or functional similarity to biological membranes is highly desirable to reduce toxicity and improve targeting capacity of nanoparticles. Numerous studies have investigated the impacts of physicochemical properties of engineered biomimetic nanoparticles on their interaction with cells, yet technical difficulties have led to the search for better biomimetics, including vesicles isolated directly from live cells. Cell-derived giant plasma membrane vesicles (GPMVs), in particular, offer a close approximation of the intact cell plasma membrane by maintaining the latter's compositional complexity, protein positioning in a fluid-mosaic pattern, and physical and mechanical properties. Thus, to overcome technical barriers of prior nanoparticle delivery approaches, we aimed to develop a novel method using GPMVs to encapsulate a variety of engineered nanoparticles, then use these core-shell, nanoparticle-GPMV vesicle structures to deliver cargo to other cells. Results: The GPMV system in this study was generated by chemically inducing vesiculation in A549 cells, a model human alveolar epithelial line. These cell-derived GPMVs retained encapsulated silica nanoparticles (50 nm diameter) for at least 48 hours at 37 °C. GPMVs showed nearly identical lipid and protein membrane profiles as the parental cell plasma membrane, with or without encapsulation of nanoparticles. Notably, GPMVs were readily endocytosed in the parental A549 cell line as well as the human monocytic THP-1 cell line. Higher cellular uptake levels were observed for GPMV-encapsulated nanoparticles compared to control groups, including free nanoparticles. Further, GPMVs delivered a variety of nanoparticles to parental cells with reduced cytotoxicity compared to free nanoparticles at concentrations that were otherwise significantly toxic. Conclusions: We have introduced a novel technique to load nanoparticles within the cell plasma membrane during the GPMV vesiculation process. These GPMVs are capable of (a) encapsulating different types of nanoparticles (including larger and not highly-positively charged bodies that have been technically challenging cargoes) using a parental cell uptake technique, and (b) improving delivery of nanoparticles to cells without significant cytotoxicity. Ultimately, endogenous surface membrane proteins and lipids can optimize the physicochemical properties of cell membrane-derived vesicles, which could lead to highly effective cell membrane-based nanoparticle/drug delivery systems.

2.
Am J Physiol Cell Physiol ; 325(2): C471-C482, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399498

RESUMO

Lipid microdomains, ordered membrane phases containing cholesterol and glycosphingolipids, play an essential role in cancer cell adhesion and ultimately metastasis. Notably, elevated levels of cholesterol-rich lipid microdomains are found in cancer cells relative to their normal counterparts. Therefore, alterations of lipid microdomains through cholesterol modulation could be used as a strategy to prevent cancer metastasis. In this study, methyl-beta-cyclodextrin (MßCD), sphingomyelinase (SMase), and simvastatin (Simva) were used to investigate the effects of cholesterol on the adhesive behaviors of four non-small cell lung cancer (NSCLC) cell lines (H1299, H23, H460, and A549) and a small cell lung cancer (SCLC) cell line (SHP-77) on E-selectin, a vascular endothelial molecule that initiates circulating tumor cell recruitment at metastatic sites. Under hemodynamic flow conditions, the number of adherent NSCLC cells on E-selectin significantly decreased by MßCD and Simva treatments, whereas SMase treatment did not show a significant effect. Significant increases in rolling velocities were detected only for H1299 and H23 cells after MßCD treatment. In contrast, cholesterol depletion did not affect SCLC cell attachment and rolling velocities. Moreover, cholesterol depletion by MßCD and Simva induced CD44 shedding and resulted in an enhanced membrane fluidity in the NSCLC cells, whereas it did not affect the membrane fluidity of the SCLC cells which lacked detectable expression of CD44. Our finding suggests that cholesterol regulates the E-selectin-mediated adhesion of NSCLC cells by redistributing the CD44 glycoprotein and thus modulating the membrane fluidity.NEW & NOTEWORTHY This study investigates the effects of cholesterol on the adhesive behaviors of lung cancer cells in recruitment at metastatic sites. Using cholesterol-modulating compounds, we found that reducing cholesterol decreases the adhesion of non-small cell lung cancer (NSCLC) cells while having no significant effect on small cell lung cancer (SCLC) cells. The study suggests that cholesterol regulates NSCLC cell metastasis by redistributing the adhesion proteins on the cells and modulating cells' membrane fluidity.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Selectina E/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Adesão Celular/fisiologia , Lipídeos , Colesterol/metabolismo , Microdomínios da Membrana/metabolismo
3.
ACS Nano ; 16(2): 2233-2248, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35138811

RESUMO

Understanding the principles that guide the uptake of engineered nanomaterials (ENMs) by cells is of interest in biomedical and occupational health research. While evidence has started to accumulate on the role of membrane proteins in ENM uptake, the role of membrane lipid chemistry in regulating ENM endocytosis has remained largely unexplored. Here, we have addressed this issue by altering the plasma membrane lipid composition directly in live cells using a methyl-α-cyclodextrin (MαCD)-catalyzed lipid exchange method. Our observations, in an alveolar epithelial cell line and using silica nanoparticles, reveal that the lipid composition of the plasma membrane outer leaflet plays a significant role in ENM endocytosis and the intracellular fate of ENMs, by affecting nonspecific ENM diffusion into the cell, changing membrane fluidity, and altering the activity of scavenger receptors (SRs) involved in active endocytosis. These results have implications for understanding ENM uptake in different subsets of cells, depending on cell membrane lipid composition.


Assuntos
Nanoestruturas , Membrana Celular/metabolismo , Endocitose , Lipídeos de Membrana/metabolismo , Nanoestruturas/química , Receptores Depuradores/metabolismo
4.
Leuk Res ; 99: 106464, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130330

RESUMO

The role of interferon-gamma (IFN-γ) in Chronic Myelogenous/Myeloid Leukemia (CML) and in the treatment of CML remains unclear; specifically, the effect of IFN-γ on apoptosis. There is reported interplay between IFN-γ and glycogen synthase kinase-3 (GSK-3), a kinase which has been implicated in both cell death and, conversely, cell survival. Thus, we utilized the CML-derived HAP1 cell line and a mutant HAP1 GSK-3ß knocked-down cell line (GSK-3ß 31bp) to investigate whether GSK-3 modulates IFN-γ's action on CML cells. Significantly less GSK-3ß 31bp cells, relative to HAP1 cells, were present after 48 h treatment with IFN-γ. IFN-γ treatment significantly decreased GSK-3ß 31bp substrate adhesiveness (relative to HAP1 cells); an observation often correlated with cell death. Fluorescence microscopy revealed that IFN-γ induces a modest level of apoptosis in the HAP1 cells and that IFN-γ induced apoptosis is significantly enhanced in GSK-3ß 31bp cells. Utilizing a complementary GSK-3ß knocked-down cell line (8bp) we found, via flow cytometric analysis, that IFN-γ induced apoptosis is significantly enhanced in GSK-3ß 8bp cells relative to HAP1 cells. Combined, our findings suggest that IFN-γ induces apoptosis of CML cells and that loss of GSK-3ß significantly augments IFN-γ-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Interferon gama/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/farmacologia , Sistemas CRISPR-Cas , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral/efeitos dos fármacos , Códon sem Sentido , Interações Medicamentosas , Citometria de Fluxo , Mutação da Fase de Leitura , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/genética , Humanos , Interferon gama/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/enzimologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Masculino , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/farmacologia , Espectrometria de Fluorescência
5.
Cell Mol Bioeng ; 13(3): 189-199, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32426057

RESUMO

INTRODUCTION: Atherosclerosis (ATH), the build up of fat in the arteries, is a principal cause of heart attack and stroke. Drug instability and lack of target specificity are major drawbacks of current clinical therapeutics. These undesirable effects can be eliminated by site-specific drug delivery. The endothelial surface over ATH lesions has been shown to overexpress vascular cell adhesion molecule1 (VCAM1), which can be used for targeted therapy. METHODS: Here, we report the synthesis, characterization, and development of anti VCAM1-functionalized liposomes to target cells overexpressing VCAM1 under static and flow conditions. Liposomes were composed of dioleoyl-phosphatidylcholine, sphingomyelin, cholesterol, and distearoyl-phosphatidylethanolamine-polyethylene glycol-cyanur (31.67:31.67:31.67:5 mol%). VCAM1 expression in endothelial cells was induced by lipopolysaccharide (LPS) treatment. RESULTS: Characterization study revealed that liposomes were negatively charged (- 7.7 ± 2.6 mV) with an average diameter of 201.3 ± 3.3 nm. Liposomes showed no toxicity toward THP-1 derived macrophages and endothelial cells. Liposomes were able to target both fixed and non-fixed endothelial cells, in vitro, with significantly higher localization observed in non-fixed conditions. To mimic biological and physiologically-relevant conditions, liposome targeting was also examined under flow (4 dyn/cm2) with or without erythrocytes (40% v/v hematocrit). Liposomes were able to target LPS-treated endothelial cells under dynamic culture, in the presence or absence of erythrocytes, although targeting efficiency was five-fold lower in flow compared to static conditions. CONCLUSIONS: This liposomal delivery system showed a significant improvement in localization on dysfunctional endothelium after surface functionalization. We conclude that VCAM1-functionalized liposomes can target and potentially deliver therapeutic compounds to ATH regions.

6.
Cell Mol Bioeng ; 13(2): 113-124, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32175025

RESUMO

Cancers of the digestive tract cause nearly one quarter of the cancer deaths worldwide, and nearly half of these are due to cancers of the esophagus and colon. Early detection of cancer significantly increases the rate of survival, and thus it is critical that cancer within these organs is detected early. In this regard, endoscopy is routinely used to screen for transforming/cancerous (i.e. dysplastic to fully cancerous) tissue. Numerous studies have revealed that the biochemistry of the luminal surface of such tissue within the colon and esophagus becomes altered throughout disease progression. Molecular endoscopic imaging (MEI), an emerging technology, seeks to exploit these changes for the early detection of cancer. The general approach for MEI is as follows: the luminal surface of an organ is exposed to molecular ligands, or particulate probes bearing a ligand, cognate to biochemistry unique to pre-cancerous/cancerous tissue. After a wash, the tissue is imaged to determine the presence of the probes. Detection of the probes post-washing suggests pathologic tissue. In the current review we provide a succinct, but extensive, review of ligands and target moieties that could be, or are currently being investigated, as possible cognate chemistries for MEI. This is followed by a review of the biophysics that determines, in large part, the success of a particular MEI design. The work draws an analogy between MEI and the well-advanced field of cell adhesion and provides a road map for engineering MEI to achieve assays that yield highly selective recognition of transforming/cancerous tissue in situ.

7.
Am J Physiol Cell Physiol ; 318(1): C83-C93, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31644306

RESUMO

Head and neck squamous cell carcinoma (HNSCC) cells bind to lymphocytes via L-selectin in a shear-dependent manner. This interaction takes place exclusively under low-shear stress conditions, such as those found within the lymph node parenchyma. This represents a novel functional role for L-selectin-selectin ligand interactions. Our previous work has characterized as-of-yet unidentified L-selectin ligands expressed by HNSCC cells that are specifically active under conditions of low shear stress consistent with lymph flow. Using an affinity purification approach, we now show that nucleolin expressed on the surface of HNSCC cells is an active ligand for L-selectin. Parallel plate chamber flow-based experiments and atomic force microscopy (AFM) experiments show that nucleolin is the main functional ligand under these low-force conditions. Furthermore, AFM shows a clear relationship between work of deadhesion and physiological loading rates. Our results reveal nucleolin as the first major ligand reported for L-selectin that operates under low-shear stress conditions.


Assuntos
Neoplasias de Cabeça e Pescoço/metabolismo , Selectina L/metabolismo , Vasos Linfáticos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Ligantes , Metástase Linfática , Vasos Linfáticos/patologia , Fosfoproteínas/genética , Ligação Proteica , Proteínas de Ligação a RNA/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Estresse Mecânico , Nucleolina
8.
Sci Rep ; 9(1): 8511, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186472

RESUMO

Cell adhesion mediated by selectins (expressed by activated endothelium, activated platelets, and leukocytes) binding to their resepective selectin ligands (expressed by cancer cells) may be involved in metastasis. Therefore, methods of characterizing selectin ligands expressed on human tissue may serve as valuable assays. Presented herein is an innovative method for detecting functional selectin ligands expressed on human tissue that uses a dynamic approach, which allows for control over the force applied to the bonds between the probe and target molecules. This new method of tissue interrogation, known as dynamic biochemical tissue analysis (DBTA), involves the perfusion of molecular probe-coated microspheres over tissues. DBTA using selectin-coated probes is able to detect functional selectin ligands expressed on tissue from multiple cancer types at both primary and metastatic sites.


Assuntos
Bioquímica/métodos , Neoplasias/metabolismo , Especificidade de Órgãos , Selectinas/metabolismo , Animais , Adesão Celular , Linhagem Celular Tumoral , Epitopos/metabolismo , Humanos , Ligantes , Camundongos , Metástase Neoplásica
9.
Integr Biol (Camb) ; 10(12): 747-757, 2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30398503

RESUMO

Esophageal cancer has a 5 year survival rate of ∼20%. This dismal prognosis is due, in part, to the fact that esophageal cancer often presents at a late stage. Thus, there is a critical need for assays that enable the early detection of cancerous tissue within the esophagus. The luminal surface of the esophagus expresses signature molecule(s) at sites of transformation providing an avenue for the development of in situ assays that detect neoplastic growth within the esophagus. An attractive approach, receiving increased attention, is the endoscopic administration of particles conjugated with ligands to signature molecules present on transforming tissue. Detection of the particles within the esophagus, post-washing, would indicate the presence of the signature molecule and thus transforming tissue. In this work, we utilized cancerous and normal esophageal cells to provide in vitro proof of principle for this approach utilizing ligand-conjugated microspheres and demonstrate the need, and provide the framework for, engineering this technology. Specifically, the study (i) reveals selective increased expression of signature molecules on cancerous esophageal cells relative to normal cells; (ii) demonstrates selective binding of ligand-conjugated microspheres to cancerous esophageal cells relative to normal cells; (iii) demonstrates that the selective recognition of cancerous, relative to normal esophageal cells, is highly dependent on the biophysical design of the assay; and (iv) advocates utilizing the knowledge from the field of cell adhesion as a guide for the effective development of ligand-conjugated particle-based schemes that seek to detect esophageal oncogenesis in situ.


Assuntos
Adesão Celular , Neoplasias Esofágicas/diagnóstico , Esôfago/patologia , Adenocarcinoma/diagnóstico , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Selectina E/química , Endoscopia , Neoplasias Esofágicas/mortalidade , Citometria de Fluxo , Fucose/química , Humanos , Ligantes , Microesferas , Tamanho da Partícula , Polissacarídeos/química , Estresse Mecânico
10.
Cell Mol Bioeng ; 11(1): 37-52, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31719877

RESUMO

INTRODUCTION: Invasion of other tissues during bloodborne metastasis in part requires adhesion of cancer cells to vascular endothelium by specific fluid shear-dependent receptor-ligand interactions. This study investigates the hypothesis that the adhesion is mediated by ligands shared between endothelial E-selectin and Galectin-1 (Gal-1), both of which are upregulated during inflammation and cancer. METHODS: Flow chamber adhesion and dynamic biochemical tissue analysis (DBTA) assays were used to evaluate whether Gal-1 modulates E-selectin adhesive interactions of breast cancer cells and tissues under dynamic flow conditions, while immunocytochemistry, immunohistochemistry, western blotting, and fluorescence anisotropy were used to study molecular interactions under static conditions. RESULTS: Dynamic adhesion assays revealed a shear-dependent binding interaction between Gal-1hFc treated breast cancer cells and tissues and E-selectin-coated beads, causing ~ 300% binding increase of the beads compared to negative controls. Immunocyto- and immunohistochemical analyses showed that Gal-1 and E-selectin fluorescent signals colocalized on cells and tissues at ~ 75% for each assay. Immunoprecipitation and Western blotting of Mac-2BP from breast cancer cell lysates revealed that Gal-1 and E-selectin share Mac-2BP as a ligand, while fluorescence anisotropy and circulating tumor cell model systems exhibited competitive or antagonistic binding between Gal-1 and E-selectin for shared ligands, including Mac-2BP. Furthermore, Mac-2BP functional blockade inhibited the effects of Gal-1 on E-selectin binding. CONCLUSIONS: In summary, this investigation reveals a shear-dependent interaction between E-selectin and Gal-1 that may be due to intermediation by a similar or shared ligand(s), including Mac-2BP, which may provide a rational basis for development of novel diagnostics or therapeutics for breast cancer.

11.
FASEB J ; 32(4): 1806-1817, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29162703

RESUMO

Although the cancer stem cell (CSC) hypothesis has been around for many years, the reliability of cell-surface markers to classify CSCs has remained debatable. The finding that cancerous cells are significantly more deformable than healthy ones has provided motivation to consider mechanical properties as a possible biomarker for stemness. In this study, using the micropipette aspiration technique, mechanical properties of multiple breast cancer cell lines were investigated and correlated with breast cancer stem cell (BCSC) marker, CD44+/CD24-/ALDH1+. The results indicated that Hs578T and MDA-MB-231 cell lines with CD44+/CD24-/ALDH1+ phenotype were significantly more deformable than the MDA-MB-468 cell line, which did not express the BCSC marker. The BT-20 cell line with intermediate deformability did not express any CD44+/CD24- phenotype, but it expressed aldehyde dehydrogenase-1 activity. In addition, more-deformable cell lines were found to roll with shear-independent velocities on E-selectin-coated substrates in a parallel-plate flow chamber, which might be a mediating factor for firm adhesion of CSCs to endothelium during metastasis. Our results indicate that rheological properties can be considered as a biomechanical marker in addition to, or as a complement of, surface markers to find more-definitive evidence of CSC characteristics within tumors.-Mohammadalipour, A., Burdick, M. M., Tees, D. F. J. Deformability of breast cancer cells in correlation with surface markers and cell rolling.


Assuntos
Biomarcadores Tumorais/metabolismo , Movimento Celular , Forma Celular , Células-Tronco Neoplásicas/citologia , Pressão , Família Aldeído Desidrogenase 1 , Neoplasias da Mama/metabolismo , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Elasticidade , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Receptores de Hialuronatos/metabolismo , Isoenzimas/metabolismo , Microfluídica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Retinal Desidrogenase/metabolismo
12.
Eur J Pharmacol ; 803: 130-137, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28343970

RESUMO

Inhibition of interleukin-6 (IL-6) holds significant promise as a therapeutic approach for triple negative breast cancer (TNBC). We previously reported that phenylmethimazole (C10) reduces IL-6 expression in several cancer cell lines. We have identified a more potent derivative of C10 termed COB-141. In the present work, we tested the hypothesis that C10 and COB-141 inhibit TNBC cell expressed IL-6 and investigated the potential for classical IL-6 pathway induced signaling within TNBC cells. A panel of TNBC cell lines (MDA-MB-231, Hs578T, MDA-MB-468) was used. Enzyme linked immunosorbent assays (ELISA) revealed that C10 and COB-141 inhibit MDA-MB-231 cell IL-6 secretion, with COB-141 being ~6.5 times more potent than C10. Therefore, the remainder of the study focused on COB-141 which inhibited IL-6 secretion, and was found, via quantitative real time polymerase chain reaction (QRT-PCR), to inhibit IL-6 mRNA in the TNBC panel. COB-141 had little, if any, effect on metabolic activity indicating that the IL-6 inhibition is not via a toxic effect. Flow cytometric analysis and QRT-PCR revealed that the TNBC cell lines do not express the IL-6 receptor (IL-6Rα). Trans-AM assays suggested that COB-141 exerts its inhibitory effect, at least in part, by reducing NF-κB (p65/p50) DNA binding. In summary, COB-141 is a potent inhibitor of TNBC cell expressed IL-6 and the inhibition does not appear to be due to non-specific toxicity. The TNBC cell lines do not have an intact classical IL-6 signaling pathway. COB-141's inhibitory effect may be due, at least in part, to reducing NF-κB (p65/p50) DNA binding.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Interleucina-6/metabolismo , Metimazol/análogos & derivados , Tiazóis/química , Tionas/química , Tionas/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Interleucina-8/metabolismo , Metimazol/química , Metimazol/farmacologia , Subunidade p50 de NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo
13.
PLoS One ; 12(3): e0173747, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28282455

RESUMO

A growing body of evidence suggests that L-selectin ligands presented on circulating tumor cells facilitate metastasis by binding L-selectin presented on leukocytes. Commonly used methods for detecting L-selectin ligands on tissues, e.g., immunostaining, are performed under static, no-flow conditions. However, such analysis does not assay for functional L-selectin ligands, specifically those ligands that promote adhesion under shear flow conditions. Recently our lab developed a method, termed dynamic biochemical tissue analysis (DBTA), to detect functional selectin ligands in situ by probing tissues with L-selectin-coated microspheres under hemodynamic flow conditions. In this investigation, DBTA was used to probe human colon tissues for L-selectin ligand activity. The detection of L-selectin ligands using DBTA was highly specific. Furthermore, DBTA reproducibly detected functional L-selectin ligands on diseased, e.g., cancerous or inflamed, tissues but not on noncancerous tissues. In addition, DBTA revealed a heterogeneous distribution of functional L-selectin ligands on colon cancer tissues. Most notably, detection of L-selectin ligands by immunostaining using HECA-452 antibody only partially correlated with functional L-selectin ligands detected by DBTA. In summation, the results of this study demonstrate that DBTA detects functional selectin ligands to provide a unique characterization of pathological tissue.


Assuntos
Bioquímica/métodos , Neoplasias do Colo/metabolismo , Selectina L/metabolismo , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/patologia , Adenocarcinoma Papilar/metabolismo , Adenocarcinoma Papilar/patologia , Carcinoma de Células em Anel de Sinete/metabolismo , Carcinoma de Células em Anel de Sinete/patologia , Neoplasias do Colo/patologia , Formaldeído , Glicoconjugados/análise , Glicoconjugados/metabolismo , Humanos , Ligantes , Microscopia de Fluorescência , Microesferas , Fixação de Tecidos/métodos
14.
Life Sci ; 149: 138-45, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903292

RESUMO

AIMS: To determine the role of sialylation on α5ß1 and α2ß1 integrins in the regulation of adhesion between breast cancer cells and extracellular matrix (ECM). MAIN METHODS: Static cell adhesion assays were performed to quantify avidity of breast cancer cells to ECM. The effects of sialidases on α2,6 sialylation was assessed by flow cytometry using biotin conjugated Sambucus nigra lectin. Lectin affinity assays were used to determine expression of α2,6 sialylated integrins. Cell migration and invasion were investigated by wound healing and transwell invasion assays. KEY FINDINGS: α2, α5 and ß1 integrins had considerable α2,6 sialylation on MDA-MB-231 cells, whereas signals from MCF-7 cells were undetectable. Cleavage of α2,6 sialylation increased adhesion of MDA-MB-231 cells to ECM, while adhesion of MCF-7 cells was unaffected, consistent with the latter's lack of endogenous α2,6 sialylated surface integrins. Neither surface expression of α2ß1 and α5ß1 integrins, nor activated ß1 integrin, changed in MDA-MB-231 cells after sialidase treatment. However, sialidase treatment did not have significant impact on migration or invasion of MDA-MB-231 cells. SIGNIFICANCE: Cell adhesion is an important early step of cancer metastasis, yet the roles of sialylation in regulating integrin-mediated breast cancer cell adhesion in comparison to migration and invasion are not well-understood. Our data suggest desialylation of α2,6-sialylated integrins increases adhesion, but not migration or invasion, of MDA-MB-231 cells to ECM without altering integrin expression. It should be considered that α2,6 sialylation may play different roles in regulating cell adhesion of different cancer cells when developing potential therapeutics targeting α2,6 sialylation.


Assuntos
Adesão Celular/fisiologia , Colágeno Tipo IV/metabolismo , Fibronectinas/metabolismo , Integrinas/metabolismo , Neuraminidase/metabolismo , Feminino , Humanos , Células MCF-7
15.
Eur J Pharmacol ; 751: 59-66, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25641748

RESUMO

The expression of vascular cell adhesion molecule-1 (VCAM-1) on the vascular endothelium can be increased by pro-inflammatory cytokines [e.g. tumor necrosis factor-α (TNF-α)]. VCAM-1 contributes to leukocyte adhesion to, and emigration from, the vasculature which is a key aspect of pathological inflammation. As such, a promising therapeutic approach for pathological inflammation is to inhibit the expression of VCAM-1. Methimazole [3-methyl-1, 3 imidazole-2 thione (MMI)] is routinely used for the treatment of Graves׳ disease and patients treated with MMI have decreased levels of circulating VCAM-1. In this study we used cultured human umbilical vein endothelial cells (HUVEC) to investigate the effect of MMI structural modifications on TNF-α induced VCAM-1 expression. We found that addition of a phenyl ring at the 4-nitrogen of MMI yields a compound that is significantly more potent than MMI at inhibiting 24h TNF-α-induced VCAM-1 protein expression. Addition of a para methoxy to the appended phenyl group increases the inhibition while substitution of a thiazole ring for an imidazole ring in the phenyl derivatives yields no clear difference in inhibition. Addition of the phenyl ring to MMI appears to increase toxicity as does substitution of a thiazole ring for an imidazole ring in the phenyl MMI derivatives. Each of the compounds reduced TNF-α-induced VCAM-1 mRNA expression and had a functional inhibitory effect, i.e. each inhibited monocytic cell adhesion to 24h TNF-α-activated HUVEC under fluid flow conditions. Combined, these studies provide important insights into the design of MMI-related anti-inflammatory compounds.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Metimazol/química , Metimazol/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/genética , Fenômenos Biomecânicos/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Humanos , Imidazóis/química , Monócitos/citologia , Monócitos/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Relação Estrutura-Atividade , Tiazóis/química
16.
Am J Physiol Cell Physiol ; 308(1): C68-78, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25339657

RESUMO

Adhesion of circulating tumor cells to vascular endothelium is mediated by specialized molecules that are functional under shear forces exerted by hematogenous flow. Endothelial E-selectin binding to glycoforms of CD44 mediates shear-resistant cell adhesion in numerous physiological and pathological conditions. However, this pathway is poorly understood in breast cancer and is the focus of the present investigation. All breast cancer cell lines used in this study strongly expressed CD44. In particular, BT-20 cells expressed CD44s and multiple CD44v isoforms, whereas MDA-MB-231 cells predominantly expressed CD44s but weakly expressed CD44v isoforms. CD44 expressed by BT-20, but not MDA-MB-231, cells possessed E-selectin ligand activity as detected by Western blotting and antigen capture assays. Importantly, CD44 expressed by intact BT-20 cells were functional E-selectin ligands, regulating cell rolling and adhesion under physiological flow conditions, as found by shRNA-targeted silencing of CD44. Antigen capture assays strongly suggest greater shear-resistant E-selectin ligand activity of BT-20 cell CD44v isoforms than CD44s. Surprisingly, CD44 was not recognized by the HECA-452 MAb, which detects sialofucosylated epitopes traditionally expressed by selectin ligands, suggesting that BT-20 cells express a novel glycoform of CD44v as an E-selectin ligand. The activity of this glycoform was predominantly attributed to N-linked glycans. Furthermore, expression of CD44v as an E-selectin ligand correlated with high levels of fucosyltransferase-3 and -6 and epithelial, rather than mesenchymal, cell phenotype. Together, these data demonstrate that expression of CD44 as a functional E-selectin ligand may be important in breast cancer metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Adesão Celular , Selectina E/metabolismo , Receptores de Hialuronatos/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células CHO , Linhagem Celular Tumoral , Movimento Celular , Cricetulus , Selectina E/genética , Células Endoteliais/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Fucosiltransferases/metabolismo , Glicosilação , Humanos , Receptores de Hialuronatos/genética , Ligantes , Metástase Neoplásica , Fenótipo , Isoformas de Proteínas , Interferência de RNA , Fluxo Sanguíneo Regional , Transfecção
17.
J Vis Exp ; (83): e51023, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24429389

RESUMO

Laboratory scale to industrial scale purification of biomolecules from cell culture supernatants and lysed cell solutions can be accomplished using affinity chromatography. While affinity chromatography using porous protein A agarose beads packed in columns is arguably the most common method of laboratory scale isolation of antibodies and recombinant proteins expressing Fc fragments of IgG, it can be a time consuming and expensive process. Time and financial constraints are especially daunting in small basic science labs that must recover hundreds of micrograms to milligram quantities of protein from dilute solutions, yet lack access to high pressure liquid delivery systems and/or personnel with expertise in bioseparations. Moreover, product quantification and characterization may also excessively lengthen processing time over several workdays and inflate expenses (consumables, wages, etc.). Therefore, a fast, inexpensive, yet effective protocol is needed for laboratory scale isolation and characterization of antibodies and other proteins possessing an Fc fragment. To this end, we have devised a protocol that can be completed by limited-experience technical staff in less than 9 hr (roughly one workday) and as quickly as 4 hr, as opposed to traditional methods that demand 20+ work hours. Most required equipment is readily available in standard biomedical science, biochemistry, and (bio)chemical engineering labs, and all reagents are commercially available. To demonstrate this protocol, representative results are presented in which chimeric murine galectin-1 fused to human Fc (Gal-1hFc) from cell culture supernatant was isolated using a protein A membrane adsorber. Purified Gal-1hFc was quantified using an expedited Western blotting analysis procedure and characterized using flow cytometry. The streamlined workflow can be modified for other Fc-expressing proteins, such as antibodies, and/or altered to incorporate alternative quantification and characterization methods.


Assuntos
Cromatografia de Afinidade/métodos , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Membranas Artificiais , Proteína Estafilocócica A/química , Animais , Cromatografia de Afinidade/instrumentação , Galectina 1/química , Galectina 1/isolamento & purificação , Humanos , Camundongos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação
18.
J Vis Exp ; (79)2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-24056855

RESUMO

Multi-color immunofluorescence microscopy to detect specific molecules in the cell membrane can be coupled with parallel plate flow chamber assays to investigate mechanisms governing cell adhesion under dynamic flow conditions. For instance, cancer cells labeled with multiple fluorophores can be perfused over a potentially reactive substrate to model mechanisms of cancer metastasis. However, multi-channel single camera systems and color cameras exhibit shortcomings in image acquisition for real-time live cell analysis. To overcome these limitations, we used a dual camera emission splitting system to simultaneously capture real-time image sequences of fluorescently labeled cells in the flow chamber. Dual camera emission splitting systems filter defined wavelength ranges into two monochrome CCD cameras, thereby simultaneously capturing two spatially identical but fluorophore-specific images. Subsequently, psuedocolored one-channel images are combined into a single real-time merged sequence that can reveal multiple target molecules on cells moving rapidly across a region of interest.


Assuntos
Adesão Celular/fisiologia , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Software
19.
Cancer Res ; 73(2): 942-52, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23149920

RESUMO

Advanced prostate cancer commonly metastasizes to bone, but transit of malignant cells across the bone marrow endothelium (BMEC) remains a poorly understood step in metastasis. Prostate cancer cells roll on E-selectin(+) BMEC through E-selectin ligand-binding interactions under shear flow, and prostate cancer cells exhibit firm adhesion to BMEC via ß1, ß4, and αVß3 integrins in static assays. However, whether these discrete prostate cancer cell-BMEC adhesive contacts culminate in cooperative, step-wise transendothelial migration into bone is not known. Here, we describe how metastatic prostate cancer cells breach BMEC monolayers in a step-wise fashion under physiologic hemodynamic flow. Prostate cancer cells tethered and rolled on BMEC and then firmly adhered to and traversed BMEC via sequential dependence on E-selectin ligands and ß1 and αVß3 integrins. Expression analysis in human metastatic prostate cancer tissue revealed that ß1 was markedly upregulated compared with expression of other ß subunits. Prostate cancer cell breaching was regulated by Rac1 and Rap1 GTPases and, notably, did not require exogenous chemokines as ß1, αVß3, Rac1, and Rap1 were constitutively active. In homing studies, prostate cancer cell trafficking to murine femurs was dependent on E-selectin ligand, ß1 integrin, and Rac1. Moreover, eliminating E-selectin ligand-synthesizing α1,3 fucosyltransferases in transgenic adenoma of mouse prostate mice dramatically reduced prostate cancer incidence. These results unify the requirement for E-selectin ligands, α1,3 fucosyltransferases, ß1 and αVß3 integrins, and Rac/Rap1 GTPases in mediating prostate cancer cell homing and entry into bone and offer new insight into the role of α1,3 fucosylation in prostate cancer development.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Próstata/patologia , Animais , Células da Medula Óssea/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Selectina E/metabolismo , Endotélio Vascular/metabolismo , Humanos , Integrina alfaVbeta3/metabolismo , Integrina beta1/metabolismo , Masculino , Camundongos
20.
PLoS One ; 7(9): e44529, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970241

RESUMO

Hematogenous metastasis involves the adhesion of circulating tumor cells to vascular endothelium of the secondary site. We hypothesized that breast cancer cell adhesion is mediated by interaction of endothelial E-selectin with its glycoprotein counter-receptor(s) expressed on breast cancer cells. At a hematogenous wall shear rate, ZR-75-1 breast cancer cells specifically adhered to E-selectin expressing human umbilical vein endothelial cells when tested in parallel plate flow chamber adhesion assays. Consistent with their E-selectin ligand activity, ZR-75-1 cells expressed flow cytometrically detectable epitopes of HECA-452 mAb, which recognizes high efficiency E-selectin ligands typified by sialofucosylated moieties. Multiple E-selectin reactive proteins expressed by ZR-75-1 cells were revealed by immunoprecipitation with E-selectin chimera (E-Ig chimera) followed by Western blotting. Mass spectrometry analysis of the 72 kDa protein, which exhibited the most prominent E-selectin ligand activity, corresponded to Mac-2 binding protein (Mac-2BP), a heretofore unidentified E-selectin ligand. Immunoprecipitated Mac-2BP expressed sialofucosylated epitopes and possessed E-selectin ligand activity when tested by Western blot analysis using HECA-452 mAb and E-Ig chimera, respectively, demonstrating that Mac-2BP is a novel high efficiency E-selectin ligand. Furthermore, silencing the expression of Mac-2BP from ZR-75-1 cells by shRNA markedly reduced their adhesion to E-selectin expressing cells under physiological flow conditions, confirming the functional E-selectin ligand activity of Mac-2BP on intact cells. In addition to ZR-75-1 cells, several other E-selectin ligand positive breast cancer cell lines expressed Mac-2BP as detected by Western blot and flow cytometry, suggesting that Mac-2BP may be an E-selectin ligand in a variety of breast cancer types. Further, invasive breast carcinoma tissue showed co-localized expression of Mac-2BP and HECA-452 antigens by fluorescence microscopy, underscoring the possible role of Mac-2BP as an E-selectin ligand. In summary, breast cancer cells express Mac-2BP as a novel E-selectin ligand, potentially revealing a new prognostic and therapeutic target for breast cancer.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias da Mama/metabolismo , Selectina E/metabolismo , Glicoproteínas de Membrana/metabolismo , Sequência de Bases , Western Blotting , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Imunoprecipitação , Ligantes , Microscopia de Fluorescência , Interferência de RNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...