Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(4-1): 044150, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38755944

RESUMO

We consider a system of noninteracting Brownian particles on the line with steplike initial condition and study the statistics of the occupation time on the positive half-line. We demonstrate that even at large times, the behavior of the occupation time exhibits long-lasting memory effects of the initialization. Specifically, we calculate the mean and the variance of the occupation time, demonstrating that the memory effects in the variance are determined by a generalized compressibility (or Fano factor), associated with the initial condition. In the particular case of the uncorrelated uniform initial condition we conduct a detailed study of two probability distributions of the occupation time: annealed (averaged over all possible initial configurations) and quenched (for a typical configuration). We show that at large times both the annealed and the quenched distributions admit large deviation form and we compute analytically the associated rate functions. We verify our analytical predictions via numerical simulations using importance sampling Monte Carlo strategy.

2.
Phys Rev E ; 108(6-1): 064113, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38243455

RESUMO

We consider a system of noninteracting Brownian particles on a line with a steplike initial condition, and we investigate the behavior of the local time at the origin at large times. We compute the mean and the variance of the local time, and we show that the memory effects are governed by the Fano factor associated with the initial condition. For the uniform initial condition, we show that the probability distribution of the local time admits a large deviation form, and we compute the corresponding large deviation functions for the annealed and quenched averaging schemes. The two resulting large deviation functions are very different. Our analytical results are supported by extensive numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...