Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(9): 12363-12371, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36848114

RESUMO

The design of responsive coatings has gained increasing attention recently, with light-responsive interfaces receiving particular appreciation, as their surface properties can be modulated with excellent spatiotemporal control. In this article, we present light-responsive conductive coatings acquired through a copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction between electropolymerized azide-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT-N3) and arylazopyrazole (AAP)-bearing alkynes. The UV/vis and X-ray photoelectron spectroscopy (XPS) data indicate a successful post-modification, supporting a covalent attachment of AAP moieties to PEDOT-N3. The thickness and degree of PEDOT-N3 modification are accessible by varying the amount of passed charge during electropolymerization and time of reaction, respectively, providing a degree of synthetic control over the physicochemical material properties. The produced substrates demonstrate a reversible and stable light-driven switching of photochromic properties in both "dry" and swelled states, as well as efficient electrocatalytic Z → E switching. The AAP-modified polymer substrates exhibit a light-controlled wetting behavior, demonstrating a consistently reversible switching of the static water contact angle with a difference up to 10.0° for CF3-AAP@PEDOT-N3. The results highlight the application of conducting PEDOT-N3 for the covalent immobilization of molecular switches while preserving their stimuli-responsive features.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...