Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 91(2): 770-4, 1989 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16667098

RESUMO

Light-shade adaptation of the chlorophyll a/b containing procaryote Prochlorothrix hollandica was studied in semicontinuous cultures adapted to 8, 80 and 200 mumole quanta per square meter per second. Chlorophyll a contents based on dry weight differed by a factor of 6 and chlorophyll b by a factor of 2.5 between the two extreme light conditions. Light utilization efficiencies determined from photosynthesis response curves were found to decrease in low light grown cultures due to lower light harvesting efficiencies; quantum requirements were constant at limiting and saturating irradiances for growth. At saturating growth irradiances, changes in light saturated oxygen evolution rate originated from changes in chlorophyll a antenna relative to the number of reaction centers II. At light-limiting conditions both the number of reaction centers II and the antenna size changed. The amount of chlorophyll b relative to reaction center II remained constant. As in cyanobacteria, the ratio of reaction center I to reaction center II was modulated during light-shade adaptation. On the other hand, time constants for photosynthetic electron transport (4 milliseconds) were low as observed in green algae and diatoms. The occurrence of state one to two and state two to one transitions is reported here. Another feature linking photosynthetic electron transport in P. hollandica to that in the eucaryotic photosynthetic apparatus was blockage of the state one to two transition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Although chlorophyll b was reported in association with photosystem I, the 630 nanometer light effect does not exclude that chlorophyll b is the photoreceptor for the state one to two transition.

2.
J Bacteriol ; 171(1): 498-502, 1989 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-2914854

RESUMO

A peptidoglycan-polysaccharide complex composed of N-acetylglucosamine, N-acetylmuramic acid, muramic acid 6-phosphate, L-alanine, D-alanine, D-glutamic acid, meso-diaminopimelic acid, N-acetylmannosamine, mannose, galactose, glucose, and phosphate was isolated from cell walls of the filamentous prochlorophyte Prochlorothrix hollandica; this complex was similar in chemical composition and structure to that found in cyanobacteria. Peptide patterns of partial acid hydrolysates of the isolated peptidoglycan revealed an A1 gamma structure with direct cross-linkage (m-diaminopimelic acid-D-alanine) of the peptide side chains. The degree of cross-linkage (63%) was found to be in the range of values obtained for gram-positive bacteria and cyanobacteria.


Assuntos
Parede Celular/análise , Bactérias Gram-Negativas/análise , Peptidoglicano/análise , Polissacarídeos/análise , Aminoácidos/análise , Carboidratos/análise , Microscopia Eletrônica , Especificidade da Espécie
3.
Nature ; 337(6205): 380-2, 1989 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-2911389

RESUMO

It is generally accepted that chloroplasts arose from one or more endosymbiotic events between an ancestral cyanobacterium and a eukaryote. Such an origin fits well in the case of the chloroplasts of rhodophytes that, like cyanobacteria, contain chlorophyll a and phycobilin pigments. The green chloroplasts from higher plants, green algae, and euglenoids however, contain chlorophyll b as well as chlorophyll a, and lack phycobilins. Consequently, it has been suggested that they arose independently of the rhodophyte chloroplasts, from an ancestral prokaryote containing that complement of pigments. The 'prochlorophytes' Prochloron didemni (an exosymbiont on didemnid ascidians) and Prochlorothrix hollandica (a recently discovered, free-living, filamentous form) have been suggested to be modern counterparts of the ancestor of the green chloroplasts because they are prokaryotes that also contain both chlorophylls a and b, and lack phycobilins. We report here a 16S rRNA-based phylogenetic analysis of P. hollandica. The organism is found to fall within the cyanobacterial line of descent, as do the green chloroplasts, but it is not a specific relative of green chloroplasts. Thus, similar pigment compositions do not necessarily reflect close evolutionary relationships.


Assuntos
Evolução Biológica , Cloroplastos/fisiologia , Bactérias Gram-Negativas/genética , Filogenia , RNA Ribossômico 16S/genética
4.
J Cell Sci ; 91 ( Pt 4): 577-86, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-3255758

RESUMO

Prochlorothrix hollandica is a newly described photosynthetic prokaryote, which contains chlorophylls a and b. In this paper we report the results of freeze fracture and freeze etch studies of the organization of the photosynthetic thylakoid membranes of Prochlorothrix. These membranes exhibit four distinct fracture faces in freeze fractured preparations, two of which are derived from membrane splitting in stacked regions of the thylakoid membrane, and two of which are derived from nonstacked regions. The existence of these four faces confirms that the thylakoid membranes of Prochlorothrix, like those of green plants, display true membrane stacking and have different internal composition in stacked and non-stacked regions, a phenomenon that has been given the name lateral heterogeneity. The general details of these fracture faces are similar to those of green plants, although the intramembrane particles of Prochlorothrix are generally smaller than those of green plants by as much as 30%. Freeze etched membrane surfaces have also been studied, and the results of these studies confirm freeze fracture observations. The outer surface of the thylakoid membrane displays both small (less than 8.0 nm) and large (greater than 10.0 nm) particles. The inner surface of the thylakoid membrane is covered with tetrameric particles, which are concentrated into stacked membrane regions, a situation that is similar to the inner surfaces of the thylakoid membranes of green plants. These tetramers have never before been reported in a prokaryote. The photosynthetic membranes of Prochlorothrix therefore represent a prokaryotic system that is remarkably similar, in structural terms, to the photosynthetic membranes found in chloroplasts of green plants.


Assuntos
Membranas/ultraestrutura , Plantas/ultraestrutura , Cloroplastos/ultraestrutura , Técnica de Fratura por Congelamento , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...