Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(40): 26659-69, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26394263

RESUMO

Time-resolved photoelectron imaging was used to study non-adiabatic relaxation dynamics in gas-phase indole following photo-excitation at 267 nm and 258 nm. Our data analysis was supported by various ab initio calculations using both coupled cluster and density functional methods. The highly differential energy- and angle-resolved information provided by our experimental approach provides extremely subtle details of the complex interactions occurring between several low-lying electronically excited states. In particular, new insight into the role and fate of the mixed Rydberg-valence 3s/πσ* state is revealed. This includes population residing on the excited state surface at large N-H separations for a relatively long period of time (∼1 ps) prior to dissociation and/or internal conversion. Our findings may, in part, be rationalized by considering the rapid evolution of this state's electronic character as the N-H stretching coordinate is extended - as extensively demonstrated in the supporting theory. Overall, our findings highlight a number of important general caveats regarding the nature of mixed Rydberg-valence excited states, their spectral signatures and detection sensitivity in photoionization measurements, and the evaluation of their overall importance in mediating electronic relaxation in a wide range of small model-chromophore systems providing bio-molecular analogues - a topic of considerable interest within the chemical dynamics community over the last decade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...