Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 15006, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31628373

RESUMO

Ecosystem-bedrock interactions power the biogeochemical cycles of Earth's shallow crust, supporting life, stimulating substrate transformation, and spurring evolutionary innovation. While oxidative processes have dominated half of terrestrial history, the relative contribution of the biosphere and its chemical fingerprints on Earth's developing regolith are still poorly constrained. Here, we report results from a two-year incipient weathering experiment. We found that the mass release and compartmentalization of major elements during weathering of granite, rhyolite, schist and basalt was rock-specific and regulated by ecosystem components. A tight interplay between physiological needs of different biota, mineral dissolution rates, and substrate nutrient availability resulted in intricate elemental distribution patterns. Biota accelerated CO2 mineralization over abiotic controls as ecosystem complexity increased, and significantly modified the stoichiometry of mobilized elements. Microbial and fungal components inhibited element leaching (23.4% and 7%), while plants increased leaching and biomass retention by 63.4%. All biota left comparable biosignatures in the dissolved weathering products. Nevertheless, the magnitude and allocation of weathered fractions under abiotic and biotic treatments provide quantitative evidence for the role of major biosphere components in the evolution of upper continental crust, presenting critical information for large-scale biogeochemical models and for the search for stable in situ biosignatures beyond Earth.

2.
Sci Total Environ ; 601-602: 247-259, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28554116

RESUMO

Alpine regions are under increased attention worldwide for their critical role in early biogeochemical cycles, their high sensitivity to environmental change, and as repositories of natural resources of high quality. Their riparian ecosystems, at the interface between aquatic and terrestrial environments, play important geochemical functions in the watershed and are biodiversity hotspots, despite a harsh climate and topographic setting. With climate change rapidly affecting the alpine biome, we still lack a comprehensive understanding of the extent of interactions between riparian surface, lake and catchment environments. A total of 189 glacial - origin lakes were surveyed in the Central Pyrenees to test how key elements of the lake and terrestrial environments interact at different scales to shape riparian plant composition. Secondly, we evaluated how underlying ecotope features drive the formation of natural communities potentially sensitive to environmental change and assessed their habitat distribution. At the macroscale, vegetation composition responded to pan-climatic gradients altitude and latitude, which captured in a narrow geographic area the transition between large European climatic zones. Hydrodynamics was the main catchment-scale factor connecting riparian vegetation with major water fluxes, followed by topography and geomorphology. Lake sediment Mg and Pb, and water Mn and Fe contents reflected local influences from mafic bedrock and soil water saturation. Community analysis identified four keystone ecosystems: (i) damp ecotone, (ii) snow bed-silicate bedrock, (iii) wet heath, and (iv) calcareous substrate. These communities and their connections with ecotope elements could be at risk from a number of environmental change factors including warmer seasons, snow line and lowland species advancement, increased nutrient/metal input and water level fluctuations. The results imply important natural terrestrial-aquatic linkages in the riparian environment at a wide range of scales, which could help better address further biomic impacts of environmental change.

3.
Sci Rep ; 7: 43208, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230202

RESUMO

The rare earth elements (REE) are increasingly important in a variety of science and economic fields, including (bio)geosciences, paleoecology, astrobiology, and mining. However, REE distribution in early rock-microbe-plant systems has remained elusive. We tested the hypothesis that REE mass-partitioning during incipient weathering of basalt, rhyolite, granite and schist depends on the activity of microbes, vascular plants (Buffalo grass), and arbuscular mycorrhiza. Pore-water element abundances revealed a rapid transition from abiotic to biotic signatures of weathering, the latter associated with smaller aqueous loss and larger plant uptake. Abiotic dissolution was 39% of total denudation in plant-microbes-mycorrhiza treatment. Microbes incremented denudation, particularly in rhyolite, and this resulted in decreased bioavailable solid pools in this rock. Total mobilization (aqueous + uptake) was ten times greater in planted compared to abiotic treatments, REE masses in plant generally exceeding those in water. Larger plants increased bioavailable solid pools, consistent with enhanced soil genesis. Mycorrhiza generally had a positive effect on total mobilization. The main mechanism behind incipient REE weathering was carbonation enhanced by biotic respiration, the denudation patterns being largely dictated by mineralogy. A consistent biotic signature was observed in La:phosphate and mobilization: solid pool ratios, and in the pattern of denudation and uptake.


Assuntos
Ecossistema , Metais Terras Raras/metabolismo , Solo/química , Metabolismo
4.
Sci Total Environ ; 560-561: 73-81, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27093125

RESUMO

Manmade climate change has expressed a plethora of complex effects on Earth's biogeochemical compartments. Climate change may also affect the mobilisation of natural metal sources, with potential ecological consequences beyond mountains' geographical limits; however, this question has remained largely unexplored. We investigated this by analysing a number of key climatic factors in relationship with trace metal accumulation in the sediment core of a Pyrenean lake. The sediment metal contents showed increasing accumulation trend over time, and their levels varied in step with recent climate change. The findings further revealed that a rise in the elevation of freezing level, a general increase in the frequency of drier periods, changes in the frequency of winter freezing days and a reducing snow cover since the early 1980s, together are responsible for the observed variability and augmented accumulation of trace metals. Our results provide clear evidence of increased mobilisation of natural metal sources - an overlooked effect of climate change on the environment. With further alterations in climate equilibrium predicted over the ensuing decades, it is likely that mountain catchments in metamorphic areas may become significant sources of trace metals, with potentially harmful consequences for the wider environment.


Assuntos
Poluentes Atmosféricos/análise , Altitude , Mudança Climática , Monitoramento Ambiental , Metais/análise
5.
Sci Total Environ ; 551-552: 496-505, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26896578

RESUMO

In low nutrient alpine lakes, the littoral zone is the most productive part of the ecosystem, and it is a biodiversity hotspot. It is not entirely clear how the scale and physical heterogeneity of surrounding catchment, its ecological composition, and larger landscape gradients work together to sustain littoral communities. A total of 113 alpine lakes from the central Pyrenees were surveyed to evaluate the functional connectivity between littoral zoobenthos and landscape physical and ecological elements at geographical, catchment and local scales, and to ascertain how they affect the formation of littoral communities. At each lake, the zoobenthic composition was assessed together with geolocation, catchment hydrodynamics, geomorphology and topography, riparian vegetation composition, the presence of trout and frogs, water pH and conductivity. Multidimensional fuzzy set models integrating benthic biota and environmental variables revealed that at geographical scale, longitude unexpectedly surpassed altitude and latitude in its effect on littoral ecosystem. This reflects a sharp transition between Atlantic and Mediterranean climates and suggests a potentially high horizontal vulnerability to climate change. Topography (controlling catchment type, snow coverage and lakes connectivity) was the most influential catchment-scale driver, followed by hydrodynamics (waterbody size, type and volume of inflow/outflow). Locally, riparian plant composition significantly related to littoral community structure, richness and diversity. These variables, directly and indirectly, create habitats for aquatic and terrestrial stages of invertebrates, and control nutrient and water cycles. Three benthic associations characterised distinct lakes. Vertebrate predation, water conductivity and pH had no major influence on littoral taxa. This work provides exhaustive information from relatively pristine sites, and unveils a strong connection between littoral ecosystem and catchment heterogeneity at scales beyond the local environment. This underpins the role of alpine lakes as sensors of local and large-scale environmental changes, which can be used in monitoring networks to evaluate further impacts.


Assuntos
Biodiversidade , Ecossistema , Monitoramento Ambiental , Lagos , Animais , Mudança Climática , Invertebrados , Plantas
6.
J Environ Monit ; 13(5): 1308-15, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21468408

RESUMO

Predatory aquatic beetles are common colonizers of natural and managed aquatic environments. While as important components of the aquatic food webs they are prone to accumulate trace elements, they have been largely neglected from metal uptake studies. We aim to test the suitability of three dytiscid species, i.e.Hydroglyphus pusillus, Laccophilus minutus and Rhantus suturalis, as trace elements (Al, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Se and Zn) bioindicators. The work was carried out in a case area representing rice paddies and control sites (reservoirs) from an arid region known for its land degradation (Monegros, NE Spain). Categorical principal component analysis (CATPCA) was tested as a nonlinear approach to identify significant relationships between metals, species and habitat conditions so as to examine the ability of these species to reflect differences in metal uptake. Except Se and As, the average concentrations of all other elements in the beetles were higher in the rice fields than in the control habitats. The CATPCA determined that H. pusillus had high capacity to accumulate Fe, Ni and Mn regardless of the habitat type, and hence may not be capable of distinguishing habitat conditions with regards to these metals. On the other hand, L. minutus was found less sensitive for Se in non-managed habitats (i.e. reservoirs), while R. suturalis was good in accumulating Al, Mo and Pb in rice fields. The latter seems to be a promising bioindicator of metal enrichment in rice fields. We conclude that predatory aquatic beetles are good candidates for trace elements bioindication in impacted and non-impacted environments and can be used in environmental monitoring studies. CATPCA proved to be a reliable approach to unveil trends in metal accumulation in aquatic invertebrates according to their habitat status.


Assuntos
Besouros/metabolismo , Monitoramento Ambiental/métodos , Oligoelementos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Ecossistema , Cadeia Alimentar , Análise de Componente Principal
7.
Sci Total Environ ; 407(11): 3546-53, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19275955

RESUMO

Lake Respomuso is a dammed lake of glacial origin at 2200 m altitude in the Central Pyrenees. This study investigated the source of a number of trace elements (As, Cd, Co, Cu, Mn, Ni, Pb and Zn) in its catchment and their possible link to the local geology. Altogether 24 sediment and 29 water samples were collected from all major streams feeding the lake. The sediments were analysed for trace elements, major mineral components, minerals and organic matter whilst water samples were analysed for dissolved metal concentrations. The trace element levels in the catchment sediment and water were relatively high compared to other similar altitude sites, with concentrations in the headwaters being generally higher than in the lower basin because of the source being concentrated in these areas. The principal component analysis revealed that the source of sediment-bound trace elements in the Lake Respomuso catchment is geogenic, and originated possibly in the sulphide minerals from slate formations. Except at one site, none of the water samples exceeded the WHO drinking water guideline for arsenic. Arsenic in water was significantly correlated with its concentration in the sediments, possibly due to the oxidation of arsenic bearing minerals. The dissolved concentrations of all other trace elements were generally lower than the WHO drinking water guide values and they were not related to their sediment concentrations. The As, Cd, Ni contents in sediment from several catchment streams exceeded their sediment quality thresholds. This geogenic source may pose risk to the stability of fragile local biodiversity and to the wider environment in the valley bellow particularly if the metals are mobilised, possibly due to environmental change.


Assuntos
Água Doce/química , Metais Pesados/análise , Poluentes Químicos da Água/análise , Arsênio/análise , Arsênio/química , Poluição Ambiental/análise , Sedimentos Geológicos/química , Metais Pesados/química , Medição de Risco , Espanha , Poluentes Químicos da Água/química , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...