Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Sci Transl Med ; 16(739): eadk9109, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507469

RESUMO

Myasthenia gravis (MG) is a neuromuscular disease that results in compromised transmission of electrical signals at the neuromuscular junction (NMJ) from motor neurons to skeletal muscle fibers. As a result, patients with MG have reduced skeletal muscle function and present with symptoms of severe muscle weakness and fatigue. ClC-1 is a skeletal muscle specific chloride (Cl-) ion channel that plays important roles in regulating neuromuscular transmission and muscle fiber excitability during intense exercise. Here, we show that partial inhibition of ClC-1 with an orally bioavailable small molecule (NMD670) can restore muscle function in rat models of MG and in patients with MG. In severely affected MG rats, ClC-1 inhibition enhanced neuromuscular transmission, restored muscle function, and improved mobility after both single and prolonged administrations of NMD670. On this basis, NMD670 was progressed through nonclinical safety pharmacology and toxicology studies, leading to approval for testing in clinical studies. After successfully completing phase 1 single ascending dose in healthy volunteers, NMD670 was tested in patients with MG in a randomized, placebo-controlled, single-dose, three-way crossover clinical trial. The clinical trial evaluated safety, pharmacokinetics, and pharmacodynamics of NMD670 in 12 patients with mild MG. NMD670 had a favorable safety profile and led to clinically relevant improvements in the quantitative myasthenia gravis (QMG) total score. This translational study spanning from single muscle fiber recordings to patients provides proof of mechanism for ClC-1 inhibition as a potential therapeutic approach in MG and supports further development of NMD670.


Assuntos
Cloretos , Miastenia Gravis , Humanos , Ratos , Animais , Cloretos/uso terapêutico , Miastenia Gravis/tratamento farmacológico , Músculo Esquelético/fisiologia , Junção Neuromuscular , Canais de Cloreto
2.
Neuromuscul Disord ; 34: 114-122, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183850

RESUMO

The 270th ENMC workshop aimed to develop a common procedure to optimize the reliability of SMN2 gene copy number determination and to reinforce collaborative networks between molecular scientists and clinicians. The workshop involved neuromuscular and clinical experts and representatives of patient advocacy groups and industry. SMN2 copy number is currently one of the main determinants for therapeutic decision in SMA patients: participants discussed the issues that laboratories may encounter in this molecular test and the cruciality of the accurate determination, due the implications as prognostic factor in symptomatic patients and in individuals identified through newborn screening programmes. At the end of the workshop, the attendees defined a set of recommendations divided into four topics: SMA molecular prognosis assessment, newborn screening for SMA, SMN2 copies and treatments, and modifiers and biomarkers. Moreover, the group draw up a series of recommendations for the companies manufacturing laboratory kits, that will help to minimize the risk of errors, regardless of the laboratories' expertise.


Assuntos
Atrofia Muscular Espinal , Proteína 2 de Sobrevivência do Neurônio Motor , Humanos , Biomarcadores/análise , Conferências de Consenso como Assunto , Dosagem de Genes , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Prognóstico , Proteína 2 de Sobrevivência do Neurônio Motor/genética
3.
Mol Ther Methods Clin Dev ; 31: 101117, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37822718

RESUMO

Onasemnogene abeparvovec is a recombinant adeno-associated virus serotype 9 (AAV9) vector-based gene therapy for spinal muscular atrophy (SMA). Patients with elevated titers of anti-AAV9 antibodies (AAV9-Ab) should not receive onasemnogene abeparvovec because of potential safety and efficacy implications. We conducted a retrospective study to describe the seroprevalence of anti-AAV9 binding antibodies for pediatric patients with SMA in the United States. At initial testing, 13.0% (115 of 882) of patients (mean [SD] age, 26.29 [33.66] weeks) had elevated AAV9-Ab titers. The prevalence of elevated titers decreased as age increased, with 18.2% (92 of 507) of patients ≤3 months old but only 1.1% (1 of 92) of patients ≥21 months old having elevated titers. This suggests transplacental maternal transfer of antibodies. No patterns of geographic variations in AAV9-Ab prevalence were confirmed. Elevated AAV9-Ab titers in children <6 weeks old decreased in all circumstances. Lower magnitudes of elevated titers declined more rapidly than greater magnitudes. Retesting was completed at the discretion of the treating clinician, so age at testing and time between tests varied. AAV9-Ab retesting should be considered when patients have elevated titers, and elevations at a young age are not a deterrent to eventual onasemnogene abeparvovec administration. Early disease-modifying treatment for SMA leads to optimal outcomes.

4.
Mol Ther Methods Clin Dev ; 30: 16-29, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37746244

RESUMO

Anc80L65 is a synthetic, ancestral adeno-associated virus that has high tropism toward retinal photoreceptors after subretinal injection in mice and non-human primates. We characterized, for the first time, the post-intravitreal cell-specific transduction profile of Anc80L65 compared with AAV9. Here we use Anc80L65 and AAV9 to intravitreally deliver a copy of the gene encoding GFP into WT C57Bl/6J mice. GFP expression was driven by one of two clinically relevant promoters, chicken ß actin (CB) or truncated MECP2 (P546). After qualitative assessment of relative GFP expression, we found Anc80L65 and AAV9 to have similar transduction profiles. Through the development of a novel method for quantifying GFP-positive retinal cells, we found Anc80L65 to have higher tropism in Müller glia and AAV9 to have higher tropism in horizontal cells. In addition, we found P546 to promote GFP expression at a more moderate level compared with the high levels seen under the CB promoter. Finally, for the first time, we characterized Anc80L65 cross-reactivity in human sera; 83% of patients with AAV2 pre-existing antibodies were found to be seropositive for Anc80L65. This study demonstrates the expanded therapeutic applications of Anc80L65 to treat retinal disease and provides the first insights to Anc80L65 pre-existing immunity in humans.

5.
Sci Rep ; 13(1): 10374, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365234

RESUMO

Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn-/-) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3ß phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling.


Assuntos
Atrofia Muscular Espinal , Proteínas Proto-Oncogênicas c-akt , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Neurônios Motores/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Inibidores de Histona Desacetilases/metabolismo , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
6.
Neuron ; 111(9): 1349-1350, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37141858

RESUMO

In this issue of Neuron, Kim et al.1 show that an Hspa8 variant modifies disease phenotypes in a mouse model of spinal muscular atrophy. Hspa8 facilitates the correct folding of proteins, enhances SNARE assembly, and influences SMN2 splicing.


Assuntos
Atrofia Muscular Espinal , Animais , Camundongos , Modelos Animais de Doenças , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Neurônios/metabolismo , Fenótipo , Splicing de RNA , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
7.
RNA ; 29(6): 735-744, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36878710

RESUMO

It is estimated that nearly 50% of mammalian transcripts contain at least one upstream open reading frame (uORF), which are typically one to two orders of magnitude smaller than the downstream main ORF. Most uORFs are thought to be inhibitory as they sequester the scanning ribosome, but in some cases allow for translation reinitiation. However, termination in the 5' UTR at the end of uORFs resembles premature termination that is normally sensed by the nonsense-mediated mRNA decay (NMD) pathway. Translation reinitiation has been proposed as a method for mRNAs to prevent NMD. Here, we test how uORF length influences translation reinitiation and mRNA stability in HeLa cells. Using custom 5' UTRs and uORF sequences, we show that reinitiation can occur on heterologous mRNA sequences, favors small uORFs, and is supported when initiation occurs with more initiation factors. After determining reporter mRNA half-lives in HeLa cells and mining available mRNA half-life data sets for cumulative predicted uORF length, we conclude that translation reinitiation after uORFs is not a robust method for mRNAs to prevent NMD. Together, these data suggest that the decision of whether NMD ensues after translating uORFs occurs before reinitiation in mammalian cells.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Ribossomos , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células HeLa , Ribossomos/metabolismo , Regiões 5' não Traduzidas , Fases de Leitura Aberta/genética , Biossíntese de Proteínas
8.
Science ; 380(6642): eadg6518, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-36996170

RESUMO

Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, arises from survival motor neuron (SMN) protein insufficiency resulting from SMN1 loss. Approved therapies circumvent endogenous SMN regulation and require repeated dosing or may wane. We describe genome editing of SMN2, an insufficient copy of SMN1 harboring a C6>T mutation, to permanently restore SMN protein levels and rescue SMA phenotypes. We used nucleases or base editors to modify five SMN2 regulatory regions. Base editing converted SMN2 T6>C, restoring SMN protein levels to wild type. Adeno-associated virus serotype 9-mediated base editor delivery in Δ7SMA mice yielded 87% average T6>C conversion, improved motor function, and extended average life span, which was enhanced by one-time base editor and nusinersen coadministration (111 versus 17 days untreated). These findings demonstrate the potential of a one-time base editing treatment for SMA.


Assuntos
Edição de Genes , Atrofia Muscular Espinal , Proteína 1 de Sobrevivência do Neurônio Motor , Proteína 2 de Sobrevivência do Neurônio Motor , Animais , Camundongos , Fibroblastos/metabolismo , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
10.
Nat Med ; 27(10): 1701-1711, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34608334

RESUMO

Spinal muscular atrophy type 1 (SMA1) is a debilitating neurodegenerative disease resulting from survival motor neuron 1 gene (SMN1) deletion/mutation. Onasemnogene abeparvovec (formerly AVXS-101) is a gene therapy that restores SMN production via one-time systemic administration. The present study demonstrates widespread biodistribution of vector genomes and transgenes throughout the central nervous system (CNS) and peripheral organs, after intravenous administration of an AAV9-mediated gene therapy. Two symptomatic infants with SMA1 enrolled in phase III studies received onasemnogene abeparvovec. Both patients died of respiratory complications unrelated to onasemnogene abeparvovec. One patient had improved motor function and the other died shortly after administration before appreciable clinical benefit could be observed. In both patients, onasemnogene abeparvovec DNA and messenger RNA distribution were widespread among peripheral organs and in the CNS. The greatest concentration of vector genomes was detected in the liver, with an increase over that detected in CNS tissues of 300-1,000-fold. SMN protein, which was low in an untreated SMA1 control, was clearly detectable in motor neurons, brain, skeletal muscle and multiple peripheral organs in treated patients. These data support the fact that onasemnogene abeparvovec has effective distribution, transduction and expression throughout the CNS after intravenous administration and restores SMN expression in humans.


Assuntos
Produtos Biológicos/efeitos adversos , Terapia Genética/efeitos adversos , Proteínas Recombinantes de Fusão/efeitos adversos , Atrofias Musculares Espinais da Infância/terapia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Autopsia , Produtos Biológicos/administração & dosagem , DNA/genética , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/efeitos adversos , Vetores Genéticos/genética , Humanos , Lactente , Recém-Nascido , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/administração & dosagem , Proteínas Recombinantes de Fusão/genética , Atrofias Musculares Espinais da Infância/genética , Atrofias Musculares Espinais da Infância/mortalidade , Atrofias Musculares Espinais da Infância/patologia , Distribuição Tecidual/efeitos dos fármacos
11.
BMJ Neurol Open ; 3(2): e000164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34466806

RESUMO

OBJECTIVE: Spinal muscular atrophy (SMA) is a motor neuron disease caused by low levels of survival motor neuron (SMN) protein. Prior work in models and patients has demonstrated electrophysiological and morphological defects at the neuromuscular junction (NMJ). Therapeutic development has resulted in clinically available therapies to increase SMN protein levels in patients and improve muscle function. Here we aimed to investigate the effect of SMN restoration (via nusinersen) on NMJ transmission in adults with SMA. METHODS: Participants undergoing nusinersen treatment underwent 3 Hz repetitive nerve stimulation (RNS) of the spinal accessory nerve to assess compound muscle action potential amplitude decrement. Maximum voluntary isometric contraction (MVICT), Revised Upper Limb Module (RULM), and 6 min walk test (6MWT) were assessed for correlations with decrement. RESULTS: Data from 13 ambulatory (7 men/6 women, mean age 40±11 years) and 11 non-ambulatory (3 men/8 women, mean age 38±12 years) participants were analysed. Cross-sectional analyses of RNS decrement were similar at 14 months of nusinersen (-14.2%±11.5%, n=17) vs baseline (-11.9%±8.3%, n=15) (unpaired t-test, p=0.5202). Longitudinal comparison of decrement in eight participants showed no change at 14 months (-13.9%±6.7%) vs baseline (-16.9%±13.4%) (paired t-test, p=0.5863). Decrement showed strong correlations with measures of MVICT, RULM and 6MWT but not age or disease duration. CONCLUSION: Adults with SMA had significant NMJ transmission defects that were not corrected with 14 months of nusinersen treatment. NMJ defects were negatively associated with physical function, and thus may represent a promising target for additive or combinatorial treatments.

12.
Neurobiol Dis ; 159: 105488, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34425216

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by survival motor neuron (SMN) protein deficiency which results in motor neuron loss and muscle atrophy. SMA is caused by a mutation or deletion of the survival motor neuron 1 (SMN1) gene and retention of the nearly identical SMN2 gene. SMN2 contains a C to T change in exon 7 that results in exon 7 exclusion from 90% of transcripts. SMN protein lacking exon 7 is unstable and rapidly degraded. The remaining full-length transcripts from SMN2 are insufficient for normal motor neuron function leading to the development of SMA. Three different therapeutic approaches that increase full-length SMN (FL-SMN) protein production are approved for treatment of SMA patients. Studies in both animal models and humans have demonstrated increasing SMN levels prior to onset of symptoms provides the greatest therapeutic benefit. Treatment of SMA, after some motor neuron loss has occurred, is also effective but to a lesser degree. The SMN∆7 mouse model is a well characterized model of severe or type 1 SMA, dying at 14 days of age. Here we treated three groups of ∆7SMA mice starting before, roughly during, and after symptom onset to determine if combining two mechanistically distinct SMN inducing therapies could improve the therapeutic outcome both before and after motor neuron loss. We found, compared with individual therapies, that morpholino antisense oligonucleotide (ASO) directed against ISS-N1 combined with the small molecule compound RG7800 significantly increased FL-SMN transcript and protein production resulting in improved survival and weight of ∆7SMA mice. Moreover, when give late symptomatically, motor unit function was completely rescued with no loss in function at 100 days of age in the dual treatment group. We have therefore shown that this dual therapeutic approach successfully increases SMN protein and rescues motor function in symptomatic ∆7SMA mice.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Doenças Assintomáticas , Músculo Esquelético/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Oligonucleotídeos Antissenso/farmacologia , Pirazinas/farmacologia , Pirimidinas/farmacologia , Atrofias Musculares Espinais da Infância/fisiopatologia , Potenciais de Ação/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Morfolinos/farmacologia , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/patologia , Junção Neuromuscular/fisiopatologia , Atrofias Musculares Espinais da Infância/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética
13.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445199

RESUMO

Proximal spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by motor neuron loss and subsequent atrophy of skeletal muscle. SMA is caused by deficiency of the essential survival motor neuron (SMN) protein, canonically responsible for the assembly of the spliceosomal small nuclear ribonucleoproteins (snRNPs). Therapeutics aimed at increasing SMN protein levels are efficacious in treating SMA. However, it remains unknown how deficiency of SMN results in motor neuron loss, resulting in many reported cellular functions of SMN and pathways affected in SMA. Herein is a perspective detailing what genetics and biochemistry have told us about SMA and SMN, from identifying the SMA determinant region of the genome, to the development of therapeutics. Furthermore, we will discuss how genetics and biochemistry have been used to understand SMN function and how we can determine which of these are critical to SMA moving forward.


Assuntos
Atrofia Muscular Espinal/genética , Animais , Humanos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Mutação , Transdução de Sinais , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
14.
Neurobiol Aging ; 104: 32-41, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33964607

RESUMO

Sarcopenia, or age-related loss of muscle mass and strength, is an important contributor to loss of physical function in older adults. The pathogenesis of sarcopenia is likely multifactorial, but recently the role of neurological degeneration, such as motor unit loss, has received increased attention. Here, we investigated the longitudinal effects of muscle hypertrophy (via overexpression of human follistatin, a myostatin antagonist) on neuromuscular integrity in C57BL/6J mice between the ages of 24 and 27 months. Following follistatin overexpression (delivered via self-complementary adeno-associated virus subtype 9 injection), muscle weight and torque production were significantly improved. Follistatin treatment resulted in improvements of neuromuscular junction innervation and transmission but had no impact on age-related losses of motor units. These studies demonstrate that follistatin overexpression-induced muscle hypertrophy not only increased muscle weight and torque production but also countered age-related degeneration at the neuromuscular junction in mice.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Folistatina/farmacologia , Músculo Esquelético/patologia , Junção Neuromuscular/efeitos dos fármacos , Junção Neuromuscular/fisiologia , Animais , Feminino , Folistatina/genética , Folistatina/metabolismo , Expressão Gênica , Hipertrofia/genética , Masculino , Camundongos Endogâmicos C57BL , Tamanho do Órgão/efeitos dos fármacos , Tamanho do Órgão/genética , Sarcopenia/genética , Sarcopenia/prevenção & controle , Transmissão Sináptica/efeitos dos fármacos
15.
Neurobiol Aging ; 101: 285-296, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33678425

RESUMO

Sarcopenia, or pathological loss of muscle mass and strength during aging, is an important contributor to loss of physical function in older adults. Sarcopenia is a multifactorial syndrome associated with intrinsic muscle and upstream neurological dysfunction. Exercise is well-established as an effective intervention for sarcopenia, but less is known about the long-term neurobiological impact of exercise. The goals of this study were to investigate the effects of exercise, alone or in combination with follistatin (FST) overexpression (antagonist of myostatin), on neuromuscular junction transmission and motor unit numbers in mice between the age of 22 and 27 months, ages at which prior studies have demonstrated that some motor unit loss is already evident. C57BL/6J mice underwent baseline assessment and were randomized to housing with or without voluntary running wheels and injection with adeno-associated virus to overexpress FST or vehicle. Groups for comparison included sedentary and running with and without FST. Longitudinal assessments showed significantly increased muscle mass and contractility in the 'running plus FST' group, but running, with and without FST, showed no effect on motor unit degeneration. In contrast, running, with and without FST, demonstrated marked improvement of neuromuscular junction transmission stability.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Folistatina/fisiologia , Expressão Gênica/genética , Expressão Gênica/fisiologia , Neurônios Motores/patologia , Junção Neuromuscular/fisiologia , Corrida/fisiologia , Sarcopenia/etiologia , Transmissão Sináptica/genética , Envelhecimento/fisiologia , Animais , Feminino , Folistatina/genética , Folistatina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sarcopenia/genética , Sarcopenia/fisiopatologia
16.
Am J Pathol ; 191(4): 730-747, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497702

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic, degenerative, striated muscle disease exacerbated by chronic inflammation. Mdx mice in the genotypic DMD model poorly represent immune-mediated pathology observed in patients. Improved understanding of innate immunity in dystrophic muscles is required to develop specific anti-inflammatory treatments. Here, inflammation in mdx mice and the more fibrotic utrn+/-;mdx Het model was comprehensively investigated. Unbiased analysis showed that mdx and Het mice contain increased levels of numerous chemokines and cytokines, with further increased in Het mice. Chemokine and chemokine receptor gene expression levels were dramatically increased in 4-week-old dystrophic quadriceps muscles, and to a lesser extent in diaphragm during the early injury phase, and had a small but consistent increase at 8 and 20 weeks. An optimized direct immune cell isolation method prevented loss of up to 90% of macrophages with density-dependent centrifugation previously used for mdx flow cytometry. Het quadriceps contain higher proportions of neutrophils and infiltrating monocytes than mdx, and higher percentages of F4/80Hi, but lower percentages of F4/80Lo cells and patrolling monocytes compared with Het diaphragms. These differences may restrict regenerative potential of dystrophic diaphragms, increasing pathologic severity. Fibrotic and inflammatory gene expression levels are higher in myeloid cells isolated from Het compared with mdx quadriceps, supporting Het mice may represent an improved model for testing therapeutic manipulation of inflammation in DMD.


Assuntos
Distrofina/metabolismo , Inflamação/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Inflamação/patologia , Macrófagos/metabolismo , Camundongos Transgênicos , Monócitos/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Músculos Respiratórios/metabolismo , Músculos Respiratórios/patologia
17.
Hum Mol Genet ; 29(21): 3477-3492, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075805

RESUMO

Spinal muscular atrophy (SMA) is caused by mutation or deletion of survival motor neuron 1 (SMN1) and retention of SMN2 leading to SMN protein deficiency. We developed an immortalized mouse embryonic fibroblast (iMEF) line in which full-length wild-type Smn (flwt-Smn) can be conditionally deleted using Cre recombinase. iMEFs lacking flwt-Smn are not viable. We tested the SMA patient SMN1 missense mutation alleles A2G, D44V, A111G, E134K and T274I in these cells to determine which human SMN (huSMN) mutant alleles can function in the absence of flwt-Smn. All missense mutant alleles failed to rescue survival in the conditionally deleted iMEFs. Thus, the function lost by these mutations is essential to cell survival. However, co-expression of two different huSMN missense mutants can rescue iMEF survival and small nuclear ribonucleoprotein (snRNP) assembly, demonstrating intragenic complementation of SMN alleles. In addition, we show that a Smn protein lacking exon 2B can rescue iMEF survival and snRNP assembly in the absence of flwt-Smn, indicating exon 2B is not required for the essential function of Smn. For the first time, using this novel cell line, we can assay the function of SMN alleles in the complete absence of flwt-Smn.


Assuntos
Atrofia Muscular Espinal/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Alelos , Animais , Sobrevivência Celular/genética , Modelos Animais de Doenças , Éxons/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Integrases/genética , Camundongos , Atrofia Muscular Espinal/patologia , Mutação de Sentido Incorreto/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética
18.
Hum Mol Genet ; 29(21): 3493-3503, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084884

RESUMO

Spinal muscular atrophy is caused by reduced levels of SMN resulting from the loss of SMN1 and reliance on SMN2 for the production of SMN. Loss of SMN entirely is embryonic lethal in mammals. There are several SMN missense mutations found in humans. These alleles do not show partial function in the absence of wild-type SMN and cannot rescue a null Smn allele in mice. However, these human SMN missense allele transgenes can rescue a null Smn allele when SMN2 is present. We find that the N- and C-terminal regions constitute two independent domains of SMN that can be separated genetically and undergo intragenic complementation. These SMN protein heteromers restore snRNP assembly of Sm proteins onto snRNA and completely rescue both survival of Smn null mice and motor neuron electrophysiology demonstrating that the essential functional unit of SMN is the oligomer.


Assuntos
Neurônios Motores/metabolismo , Atrofia Muscular Espinal/genética , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Alelos , Aminoácidos/genética , Animais , Modelos Animais de Doenças , Éxons/genética , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos Knockout , Neurônios Motores/patologia , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patologia , Mutação de Sentido Incorreto/genética , Multimerização Proteica/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas do Complexo SMN/genética
20.
Hum Genet ; 138(3): 241-256, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30788592

RESUMO

Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by loss or mutation of the survival motor neuron 1 (SMN1) gene and retention of SMN2. We performed targeted capture and sequencing of the SMN2, CFTR, and PLS3 genes in 217 SMA patients. We identified a 6.3 kilobase deletion that occurred in both SMN1 and SMN2 (SMN1/2) and removed exons 7 and 8. The deletion junction was flanked by a 21 bp repeat that occurred 15 times in the SMN1/2 gene. We screened for its presence in 466 individuals with the known SMN1 and SMN2 copy numbers. In individuals with 1 SMN1 and 0 SMN2 copies, the deletion occurred in 63% of cases. We modeled the deletion junction frequency and determined that the deletion occurred in both SMN1 and SMN2. We have identified the first deletion junction where the deletion removes exons 7 and 8 of SMN1/2. As it occurred in SMN1, it is a pathogenic mutation. We called variants in the PLS3 and SMN2 genes, and tested for association with mild or severe exception patients. The variants A-44G, A-549G, and C-1897T in intron 6 of SMN2 were significantly associated with mild exception patients, but no PLS3 variants correlated with severity. The variants occurred in 14 out of 58 of our mild exception patients, indicating that mild exception patients with an intact SMN2 gene and without modifying variants occur. This sample set can be used in the association analysis of candidate genes outside of SMN2 that modify the SMA phenotype.


Assuntos
Deleção de Genes , Estudos de Associação Genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Fenótipo , Sequência de Bases , Biologia Computacional , Dosagem de Genes , Frequência do Gene , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Linhagem , Polimorfismo de Nucleotídeo Único , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...