Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J Appl Ecol ; 56(7): 1649-1660, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31341330

RESUMO

Surveillance of adult Culicoides biting midge flight activity is used as an applied ecological method to guide the management of arbovirus incursions on livestock production in Europe and Australia.To date the impact of changes in the phenology of adult vector activity on arbovirus transmission has not been defined. We investigated this at two sites in the UK, identifying 150,000 Culicoides biting midges taken from 2867 collections over a nearly 40 year timescale.Whilst we recorded no change in seasonal activity at one site, shifts in first adult appearance and last adult appearance increased the seasonal activity period of Culicoides species at the other site by 40 days over the time period.Lengthening of the adult activity season was driven by an increase in abundance of Culicoides and correlated with local increases in temperature and precipitation. This diversity in responses poses significant challenges for predicting future transmission and overwintering risk. Policy implications. Our analysis not only shows a dramatic and consistent increase in the adult active period of Culicoides biting midges, but also that this varies significantly between sites. This suggests broad-scale analyses alone are insufficient to understand the potential impacts of changes in climate on arbovirus vector populations. Understanding the impact of climate change on adult Culicoides seasonality and transmission of arboviruses requires the context of changes in a range of other local ecological drivers.

2.
Phytopathology ; 109(1): 133-144, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30028232

RESUMO

The Australian wheat stem rust (Puccinia graminis f. sp. tritici) population was shaped by the introduction of four exotic incursions into the country. It was previously hypothesized that at least two of these (races 326-1,2,3,5,6 and 194-1,2,3,5,6 first detected in 1969) had an African origin and moved across the Indian Ocean to Australia on high-altitude winds. We provide strong supportive evidence for this hypothesis by combining genetic analyses and complex atmospheric dispersion modeling. Genetic analysis of 29 Australian and South African P. graminis f. sp. tritici races using microsatellite markers confirmed the close genetic relationship between the South African and Australian populations, thereby confirming previously described phenotypic similarities. Lagrangian particle dispersion model simulations using finely resolved meteorological data showed that long distance dispersal events between southern Africa and Australia are indeed possible, albeit rare. Simulated urediniospore transmission events were most frequent from central South Africa (viable spore transmission on approximately 7% of all simulated release days) compared with other potential source regions in southern Africa. The study acts as a warning of possible future P. graminis f. sp. tritici dispersal events from southern Africa to Australia, which could include members of the Ug99 race group, emphasizing the need for continued surveillance on both continents.


Assuntos
Basidiomycota/genética , Repetições de Microssatélites , Doenças das Plantas/microbiologia , Triticum/microbiologia , África Austral , Austrália , Basidiomycota/patogenicidade , Simulação por Computador , Vento
3.
Environ Res Lett ; 14(11): 115004, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33343688

RESUMO

Wheat rust diseases pose one of the greatest threats to global food security, including subsistence farmers in Ethiopia. The fungal spores transmitting wheat rust are dispersed by wind and can remain infectious after dispersal over long distances. The emergence of new strains of wheat rust has exacerbated the risks of severe crop loss. We describe the construction and deployment of a near realtime early warning system (EWS) for two major wind-dispersed diseases of wheat crops in Ethiopia that combines existing environmental research infrastructures, newly developed tools and scientific expertise across multiple organisations in Ethiopia and the UK. The EWS encompasses a sophisticated framework that integrates field and mobile phone surveillance data, spore dispersal and disease environmental suitability forecasting, as well as communication to policy-makers, advisors and smallholder farmers. The system involves daily automated data flow between two continents during the wheat season in Ethiopia. The framework utilises expertise and environmental research infrastructures from within the cross-disciplinary spectrum of biology, agronomy, meteorology, computer science and telecommunications. The EWS successfully provided timely information to assist policy makers formulate decisions about allocation of limited stock of fungicide during the 2017 and 2018 wheat seasons. Wheat rust alerts and advisories were sent by short message service and reports to 10 000 development agents and approximately 275 000 smallholder farmers in Ethiopia who rely on wheat for subsistence and livelihood security. The framework represents one of the first advanced crop disease EWSs implemented in a developing country. It provides policy-makers, extension agents and farmers with timely, actionable information on priority diseases affecting a staple food crop. The framework together with the underpinning technologies are transferable to forecast wheat rusts in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops.

4.
Int J Biometeorol ; 61(7): 1233-1245, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28091855

RESUMO

Bluetongue, an economically important animal disease, can be spread over long distances by carriage of insect vectors (Culicoides biting midges) on the wind. The weather conditions which influence the midge's flight are controlled by synoptic scale atmospheric circulations. A method is proposed that links wind-borne dispersion of the insects to synoptic circulation through the use of a dispersion model in combination with principal component analysis (PCA) and cluster analysis. We illustrate how to identify the main synoptic situations present during times of midge incursions into the UK from the European continent. A PCA was conducted on high-pass-filtered mean sea-level pressure data for a domain centred over north-west Europe from 2005 to 2007. A clustering algorithm applied to the PCA scores indicated the data should be divided into five classes for which averages were calculated, providing a classification of the main synoptic types present. Midge incursion events were found to mainly occur in two synoptic categories; 64.8% were associated with a pattern displaying a pressure gradient over the North Atlantic leading to moderate south-westerly flow over the UK and 17.9% of the events occurred when high pressure dominated the region leading to south-easterly or easterly winds. The winds indicated by the pressure maps generally compared well against observations from a surface station and analysis charts. This technique could be used to assess frequency and timings of incursions of virus into new areas on seasonal and decadal timescales, currently not possible with other dispersion or biological modelling methods.


Assuntos
Bluetongue/transmissão , Ceratopogonidae , Insetos Vetores , Modelos Teóricos , Animais , Análise por Conglomerados , Análise de Componente Principal , Reino Unido , Vento
5.
Sci Rep ; 6: 27247, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27263862

RESUMO

The role of the northward expansion of Culicoides imicola Kieffer in recent and unprecedented outbreaks of Culicoides-borne arboviruses in southern Europe has been a significant point of contention. We combined entomological surveys, movement simulations of air-borne particles, and population genetics to reconstruct the chain of events that led to a newly colonized French area nestled at the northern foot of the Pyrenees. Simulating the movement of air-borne particles evidenced frequent wind-transport events allowing, within at most 36 hours, the immigration of midges from north-eastern Spain and Balearic Islands, and, as rare events, their immigration from Corsica. Completing the puzzle, population genetic analyses discriminated Corsica as the origin of the new population and identified two successive colonization events within west-Mediterranean basin. Our findings are of considerable importance when trying to understand the invasion of new territories by expanding species.


Assuntos
Bluetongue/transmissão , Ceratopogonidae/classificação , Ceratopogonidae/fisiologia , Insetos Vetores/classificação , Insetos Vetores/fisiologia , Animais , Bluetongue/epidemiologia , Ceratopogonidae/genética , Ceratopogonidae/virologia , DNA/genética , Surtos de Doenças , Entomologia , Europa (Continente) , França , Variação Genética , Genética Populacional , Insetos Vetores/genética , Insetos Vetores/virologia , Desequilíbrio de Ligação , Filogeografia , Análise de Sequência de DNA , Ovinos , Espanha , Vento
6.
Phytopathology ; 105(7): 917-28, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25775107

RESUMO

A severe stem rust epidemic occurred in southern Ethiopia during November 2013 to January 2014, with yield losses close to 100% on the most widely grown wheat cultivar, 'Digalu'. Sixty-four stem rust samples collected from the regions were analyzed. A meteorological model for airborne spore dispersal was used to identify which regions were most likely to have been infected from postulated sites of initial infection. Based on the analyses of 106 single-pustule isolates derived from these samples, four races of Puccinia graminis f. sp. tritici were identified: TKTTF, TTKSK, RRTTF, and JRCQC. Race TKTTF was found to be the primary cause of the epidemic in the southeastern zones of Bale and Arsi. Isolates of race TKTTF were first identified in samples collected in early October 2013 from West Arsi. It was the sole or predominant race in 31 samples collected from Bale and Arsi zones after the stem rust epidemic was established. Race TTKSK was recovered from 15 samples from Bale and Arsi zones at low frequencies. Genotyping indicated that isolates of race TKTTF belongs to a genetic lineage that is different from the Ug99 race group and is composed of two distinct genetic types. Results from evaluation of selected germplasm indicated that some cultivars and breeding lines resistant to the Ug99 race group are susceptible to race TKTTF. Appearance of race TKTTF and the ensuing epidemic underlines the continuing threats and challenges posed by stem rust not only in East Africa but also to wider-scale wheat production.


Assuntos
Basidiomycota/genética , Triticum/microbiologia , Etiópia , Genótipo , Interações Hospedeiro-Patógeno , Fenótipo , Doenças das Plantas/genética
7.
Proc Natl Acad Sci U S A ; 109(37): 14924-9, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22927392

RESUMO

Little is known of the population dynamics of long-range insect migrants, and it has been suggested that the annual journeys of billions of nonhardy insects to exploit temperate zones during summer represent a sink from which future generations seldom return (the "Pied Piper" effect). We combine data from entomological radars and ground-based light traps to show that annual migrations are highly adaptive in the noctuid moth Autographa gamma (silver Y), a major agricultural pest. We estimate that 10-240 million immigrants reach the United Kingdom each spring, but that summer breeding results in a fourfold increase in the abundance of the subsequent generation of adults, all of which emigrate southward in the fall. Trajectory simulations show that 80% of emigrants will reach regions suitable for winter breeding in the Mediterranean Basin, for which our population dynamics model predicts a winter carrying capacity only 20% of that of northern Europe during the summer. We conclude not only that poleward insect migrations in spring result in major population increases, but also that the persistence of such species is dependent on summer breeding in high-latitude regions, which requires a fundamental change in our understanding of insect migration.


Assuntos
Migração Animal/fisiologia , Modelos Teóricos , Mariposas/fisiologia , Estações do Ano , Animais , Geografia , Modelos Lineares , Dinâmica Populacional , Radar , Reprodução/fisiologia , Reino Unido
8.
Proc Biol Sci ; 279(1737): 2354-62, 2012 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-22319128

RESUMO

The 2006 bluetongue (BT) outbreak in northwestern Europe had devastating effects on cattle and sheep in that intensively farmed area. The role of wind in disease spread, through its effect on Culicoides dispersal, is still uncertain, and remains unquantified. We examine here the relationship between farm-level infection dates and wind speed and direction within the framework of a novel model involving both mechanistic and stochastic steps. We consider wind as both a carrier of host semio-chemicals, to which midges might respond by upwind flight, and as a transporter of the midges themselves, in a more or less downwind direction. For completeness, we also consider midge movement independent of wind and various combinations of upwind, downwind and random movements. Using stochastic simulation, we are able to explain infection onset at 94 per cent of the 2025 affected farms. We conclude that 54 per cent of outbreaks occurred through (presumably midge) movement of infections over distances of no more than 5 km, 92 per cent over distances of no more than 31 km and only 2 per cent over any greater distances. The modal value for all infections combined is less than 1 km. Our analysis suggests that previous claims for a higher frequency of long-distance infections are unfounded. We suggest that many apparent long-distance infections resulted from sequences of shorter-range infections; a 'stepping stone' effect. Our analysis also found that downwind movement (the only sort so far considered in explanations of BT epidemics) is responsible for only 39 per cent of all infections, and highlights the effective contribution to disease spread of upwind midge movement, which accounted for 38 per cent of all infections. The importance of midge flight speed is also investigated. Within the same model framework, lower midge active flight speed (of 0.13 rather than 0.5 m s(-1)) reduced virtually to zero the role of upwind movement, mainly because modelled wind speeds in the area concerned were usually greater than such flight speed. Our analysis, therefore, highlights the need to improve our knowledge of midge flight speed in field situations, which is still very poorly understood. Finally, the model returned an intrinsic incubation period of 8 days, in accordance with the values reported in the literature. We argue that better understanding of the movement of infected insect vectors is an important ingredient in the management of future outbreaks of BT in Europe, and other devastating vector-borne diseases elsewhere.


Assuntos
Algoritmos , Bluetongue/epidemiologia , Bluetongue/transmissão , Ceratopogonidae/fisiologia , Surtos de Doenças/veterinária , Voo Animal/fisiologia , Insetos Vetores/fisiologia , Vento , Animais , Ceratopogonidae/virologia , Simulação por Computador , Europa (Continente)/epidemiologia , Insetos Vetores/virologia , Modelos Teóricos , Ruminantes , Processos Estocásticos
9.
Cien Saude Colet ; 15(3): 743-56, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20464187

RESUMO

Climate change is likely to affect the nature of pathogens/ chemicals in the environment and their fate and transport. We assess the implications of climate change for changes in human exposures to pathogens/chemicals in agricultural systems in the UK and discuss the effects on health impacts, using expert input and literature on climate change; health effects from exposure to pathogens/chemicals arising from agriculture; inputs of chemicals/pathogens to agricultural systems; and human exposure pathways for pathogens/chemicals in agricultural systems. We established the evidence base for health effects of chemicals/pathogens in the agricultural environment; determined the potential implications of climate change on chemical/pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of various contaminants. We merged data to assess the implications of climate change in terms of indirect human exposure to pathogens/chemicals in agricultural systems, and defined recommendations on future research and policy changes to manage adverse increases in risks.


Assuntos
Agricultura , Microbiologia do Ar , Mudança Climática , Exposição Ambiental/efeitos adversos , Poluição Ambiental/efeitos adversos , Microbiologia da Água , Humanos , Reino Unido
10.
Ciênc. Saúde Colet. (Impr.) ; 15(3): 743-756, maio 2010. tab, ilus
Artigo em Inglês | LILACS | ID: lil-553093

RESUMO

Climate change is likely to affect the nature of pathogens/ chemicals in the environment and their fate and transport. We assess the implications of climate change for changes in human exposures to pathogens/chemicals in agricultural systems in the UK and discuss the effects on health impacts, using expert input and literature on climate change; health effects from exposure to pathogens/chemicals arising from agriculture; inputs of chemicals/pathogens to agricultural systems; and human exposure pathways for pathogens/chemicals in agricultural systems. We established the evidence base for health effects of chemicals/pathogens in the agricultural environment; determined the potential implications of climate change on chemical/pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of various contaminants. We merged data to assess the implications of climate change in terms of indirect human exposure to pathogens/chemicals in agricultural systems, and defined recommendations on future research and policy changes to manage adverse increases in risks.


É provável que a mudança climática afete a natureza, destino e transporte de elementos patogênicos/químicos no ambiente . Avaliamos as implicações das mudanças climáticas em mudanças na exposição humana a elementos patogênicos/químicos nos sistemas agrícolas no Reino Unido e discutimos os efeitos sobre os impactos à saúde, usando a contribuição de especialistas e literatura; efeitos à saúde da exposição a elementos patogênicos/químicos provenientes da agricultura; introdução de elementos químicos/patogênicos e caminhos de exposição humana a elementos patogênicos/químicos nos sistemas agrícolas. Definimos a base de evidência para efeitos de saúde de elementos químicos/patogênicos no ambiente agrícola; determinamos as possíveis implicações da mudança climática na introdução de elementos químicos/patogênicos nos sistemas agrícolas; e exploramos os efeitos da mudança climática no transporte ambiental e destino de diversos contaminantes. Consolidamos dados para avaliar as implicações das mudanças climáticas em relação à exposição humana indireta a elementos patogênicos/químicos nos sistemas agrícolas e recomendamos futuras pesquisas e mudanças políticas para administrar aumentos adversos nos riscos.


Assuntos
Humanos , Agricultura , Microbiologia do Ar , Mudança Climática , Exposição Ambiental/efeitos adversos , Poluição Ambiental/efeitos adversos , Microbiologia da Água , Reino Unido
11.
Science ; 327(5966): 682-5, 2010 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-20133570

RESUMO

Many insects undertake long-range seasonal migrations to exploit temporary breeding sites hundreds or thousands of kilometers apart, but the behavioral adaptations that facilitate these movements remain largely unknown. Using entomological radar, we showed that the ability to select seasonally favorable, high-altitude winds is widespread in large day- and night-flying migrants and that insects adopt optimal flight headings that partially correct for crosswind drift, thus maximizing distances traveled. Trajectory analyses show that these behaviors increase migration distances by 40% and decrease the degree of drift from seasonally optimal directions. These flight behaviors match the sophistication of those seen in migrant birds and help explain how high-flying insects migrate successfully between seasonal habitats.


Assuntos
Migração Animal , Borboletas/fisiologia , Voo Animal , Mariposas/fisiologia , Vento , Altitude , Animais , Simulação por Computador , Orientação , Radar , Estações do Ano
12.
Epidemics ; 2(3): 148-154, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21352785

RESUMO

Following the arrival of bluetongue virus serotype 8 (BTV-8) in southeast England in September 2007, the Scottish Government commissioned research to assess the economic consequences of a BTV-8 incursion to Scotland. Here we present the first component of the assessment, which entailed identifying feasible incursion scenarios for the virus. Our analyses focused on three routes of introduction: wind-borne dispersal of infected vectors, import of infected animals and northwards spread of BTV from affected areas in GB. These analyses were further refined by considering the spatial and temporal variation in the probability of onward transmission from an initial incursion.


Assuntos
Vírus Bluetongue , Bluetongue/epidemiologia , Criação de Animais Domésticos , Animais , Bluetongue/prevenção & controle , Bluetongue/transmissão , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Doenças dos Bovinos/transmissão , Doenças dos Bovinos/virologia , Ceratopogonidae/virologia , Epidemias/prevenção & controle , Epidemias/veterinária , Insetos Vetores/virologia , Escócia/epidemiologia , Ovinos/virologia , Reino Unido/epidemiologia , Vento
13.
Vet J ; 183(3): 278-86, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19138867

RESUMO

Foot-and-mouth disease virus (FMDV) spreads by direct contact between animals, by animal products (milk, meat and semen), by mechanical transfer on people or fomites and by the airborne route, with the relative importance of each mechanism depending on the particular outbreak characteristics. Atmospheric dispersion models have been developed to assess airborne spread of FMDV in a number of countries, including the UK, Denmark, Australia, New Zealand, USA and Canada. These models were compared at a Workshop hosted by the Institute for Animal Health/Met Office in 2008. Each modeller was provided with data relating to the 1967 outbreak of FMD in Hampshire, UK, and asked to predict the spread of FMDV by the airborne route. A number of key issues emerged from the Workshop and subsequent modelling work: (1) in general all models predicted similar directions for livestock at risk, with much of the remaining differences strongly related to differences in the meteorological data used; (2) determination of an accurate sequence of events on the infected premises is highly important, especially if the meteorological conditions vary substantially during the virus emission period; (3) differences in assumptions made about virus release, environmental fate and susceptibility to airborne infection can substantially modify the size and location of the downwind risk area. All of the atmospheric dispersion models compared at the Workshop can be used to assess windborne spread of FMDV and provide scientific advice to those responsible for making control and eradication decisions in the event of an outbreak of disease.


Assuntos
Microbiologia do Ar , Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/transmissão , Modelos Biológicos , Animais , Animais Domésticos/virologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Transmissão de Doença Infecciosa/veterinária , Febre Aftosa/virologia , Medição de Risco
14.
Environ Health Perspect ; 117(4): 508-14, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19440487

RESUMO

OBJECTIVE: Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. DATA SOURCES: In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. DATA SYNTHESIS: We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. CONCLUSIONS: Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.


Assuntos
Agroquímicos/toxicidade , Exposição Ambiental , Poluentes Ambientais/toxicidade , Efeito Estufa , Interações Hospedeiro-Patógeno , Agroquímicos/metabolismo , Animais , Clima , Vetores de Doenças , Farmacorresistência Bacteriana , Exposição Ambiental/prevenção & controle , Poluentes Ambientais/metabolismo , Contaminação de Alimentos , Humanos
15.
J R Soc Interface ; 6(34): 455-62, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-18757269

RESUMO

Foot-and-mouth disease is a highly contagious disease of cloven-hoofed animals, the control and eradication of which is of significant worldwide socio-economic importance. The virus may spread by direct contact between animals or via fomites as well as through airborne transmission, with the latter being the most difficult to control. Here, we consider the risk of infection to flocks or herds from airborne virus emitted from a known infected premises. We show that airborne infection can be predicted quickly and with a good degree of accuracy, provided that the source of virus emission has been determined and reliable geo-referenced herd data are available. A simple model provides a reliable tool for estimating risk from known sources and for prioritizing surveillance and detection efforts. The issue of data information management systems was highlighted as a lesson to be learned from the official inquiry into the UK 2007 foot-and-mouth outbreak: results here suggest that the efficacy of disease control measures could be markedly improved through an accurate livestock database incorporating flock/herd size and location, which would enable tactical as well as strategic modelling.


Assuntos
Animais Domésticos/virologia , Febre Aftosa/transmissão , Agricultura , Animais , Febre Aftosa/epidemiologia , Febre Aftosa/virologia , Modelos Teóricos , Medição de Risco , Reino Unido/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...