Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 99(2-1): 023108, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30934347

RESUMO

We report on experiments and modeling on a rotating confined liquid that is forced by circumferential jets coaxial with the rotation axis, wherein system-scale secondary flows are observed to emerge. The jets are evenly divided in number between inlets and outlets and have zero net mass transport. For low forcing strengths the sign of this flow depends on the sign of a sloped end cap, which simulates a planetary ß plane. For increased forcing strengths the secondary flow direction is insensitive to the slope sign, and instead appears to be dominated by an asymmetry in the forcing mechanism, namely, the difference in radial divergence between the inlet and outlet jet profiles. This asymmetry yields a net radial velocity that is affected by the Coriolis force, inducing secondary zonal flow.

2.
Rev Sci Instrum ; 80(2): 024501, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19256666

RESUMO

A novel Taylor-Couette experiment has been developed to produce rotating shear flows for the study of hydrodynamic and magnetohydrodynamic instabilities which are believed to drive angular momentum transport in astrophysical accretion disks. High speed, concentric, corotating cylinders generate the flow where the height of the cylinders is twice the radial gap width. Ekman pumping is controlled and minimized by splitting the vertical boundaries into pairs of nested, differentially rotating rings. The end rings and cylinders comprise four independently driven rotating components which provide flexibility in developing flow profiles. The working fluids of the experiment are water, a water-glycerol mix, or a liquid gallium alloy. The mechanical complexity of the apparatus and large dynamic pressures generated by high speed operation with the gallium alloy presented unique challenges. The mechanical implementation of the experiment and some representative results obtained with laser Doppler velocimetry in water are discussed.

3.
Phys Rev Lett ; 87(13): 135001, 2001 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-11580596

RESUMO

The nonlinear coupling between small scale high-frequency turbulence and larger scale lower-frequency fluctuations increases transiently in transitions to improved confinement in the DIII-D tokamak. This increase starts before the rapid turbulence suppression and E x B shear-flow development in the region that becomes the H-mode transport barrier/shear flow region. After the transition, the coupling returns to L-mode levels. These results are consistent with expectations for spontaneous transitions to improved confinement triggered by a turbulence-driven sheared flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...