Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(6): e0014224, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38775476

RESUMO

Beech leaf disease (BLD) is a newly emerging disease in North America that affects American beech (Fagus grandifolia). It is increasingly recognized that BLD is caused by a subspecies of the anguinid nematode Litylenchus crenatae subsp. mccannii (hereafter L. crenatae), which is likely native to East Asia. How nematode infestation of leaves affects the leaf microbiome and whether changes in the microbiome could contribute to BLD symptoms remain uncertain. In this study, we examined bacterial and fungal communities associated with the leaves of F. grandifolia across nine sites in Ohio and Pennsylvania that were either symptomatic or asymptomatic for BLD and used qPCR to measure relative nematode infestation levels. We found significantly higher levels of infestation at sites visibly symptomatic for BLD. Low levels of nematode infestation were also observed at asymptomatic sites, which suggests that nematodes can be present without visible symptoms evident. Bacterial and fungal communities were significantly affected by sampling site and symptomology, but only fungal communities were affected by nematode presence alone. We found many significant indicators of both bacteria and fungi related to symptoms of BLD, with taxa generally occurring in both asymptomatic and symptomatic leaves, suggesting that microbes are not responsible for BLD but could act as opportunistic pathogens. Of particular interest was the fungal genus Erysiphe, which is common in the Fagaceae and is reported to overwinter in buds-a strategy consistent with L. crenatae. The specific role microbes play in opportunistic infection of leaves affected by L. crenatae will require additional study. IMPORTANCE: Beech leaf disease (BLD) is an emerging threat to American beech (Fagus grandifolia) and has spread quickly throughout the northeastern United States and into southern Canada. This disease leads to disfigurement of leaves and is marked by characteristic dark, interveinal banding, followed by leaf curling and drop in more advanced stages. BLD tends to especially affect understory leaves, which can lead to substantial thinning of the forest understory where F. grandifolia is a dominant tree species. Understanding the cause of BLD is necessary to employ management strategies that protect F. grandifolia and the forests where it is a foundation tree species. Current research has confirmed that the foliar nematode Litylenchus crenatae subsp. mccannii is required for BLD, but whether other organisms are involved is currently unknown. Here, we present a study that investigated leaf-associated fungi and bacteria of F. grandifolia to understand more about how microorganisms may contribute to BLD.


Assuntos
Bactérias , Fagus , Fungos , Doenças das Plantas , Folhas de Planta , Fagus/microbiologia , Fagus/parasitologia , Animais , Folhas de Planta/microbiologia , Folhas de Planta/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Fungos/classificação , Fungos/isolamento & purificação , Fungos/genética , Fungos/fisiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Micobioma , Pennsylvania , Ohio , Microbiota , Nematoides/microbiologia
2.
AoB Plants ; 15(6): plad078, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38111607

RESUMO

Spring ephemerals are wildflowers found in temperate deciduous forests that typically display aboveground shoots for a period of 2 months or less. Early spring, before the canopy leaves out, marks the beginning of the aboveground growth period where ephemerals acquire nutrients and resources via aboveground tissues. Several studies have shown that spring ephemeral reproduction is affected by spring temperature, but few have looked at how weather conditions of the current and previous seasons, including precipitation and temperature, influence aboveground growth. Here, we examine the response of a spring ephemeral community in a temperate hardwood forest to weather conditions during their current and previous growing seasons. For 15 years we estimated percent cover of each species within our community. We highlighted five dominant spring ephemerals within this community: wild leek (Allium tricoccum), cutleaf toothwort (Cardamine concatenata), spring beauty (Claytonia virginica), squirrel corn (Dicentra canadensis) and trout lily (Erythronium americanum). We compared changes in cover on both a community and species level from 1 year to the next with average precipitation and temperature of the year of measurement as well as the year prior. We found precipitation and temperature influence a change in cover at the community and species level, but the strength of that influence varies by species. There were few significant correlations between plant cover in the current year and temperature and precipitation in the 30 days preceding measurement. However, we found significant correlations between plant cover and precipitation and temperature during the previous spring; precipitation and cover change were positively correlated, whereas temperature and cover change were negatively correlated. Overall, cooler, wetter springs lead to an increase in aboveground cover the next year. Learning how individual species within a forest plant community respond to weather conditions is a crucial part of understanding how plant communities will respond to climate change.

3.
Plant Dis ; 107(11): 3354-3361, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37133340

RESUMO

Beech leaf disease (BLD), an emerging threat to American beech (Fagus grandifolia) in the northern United States and Canada, was recently confirmed to be caused by the nematode Litylenchus crenatae subsp. mccannii (hereafter L. crenatae). Consequently, there is a need for a rapid, sensitive, and accurate method for detecting L. crenatae for both diagnostic as well as control purposes. This research developed a new set of DNA primers that specifically amplify L. crenatae and allow for accurate detection of the nematode in plant tissue. These primers have also been used in quantitative PCR (qPCR) to determine relative differences in gene copy number between samples. This primer set provides an improved, effective tool for monitoring and detecting L. crenatae in temperate tree leaf tissue which is necessary to understand the spread of this emerging forest pest and to develop management strategies.


Assuntos
Fagus , Fagus/genética , Florestas , Árvores , Folhas de Planta , Reação em Cadeia da Polimerase
4.
J Fungi (Basel) ; 9(4)2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37108950

RESUMO

Beech leaf disease (BLD) is an emerging forest infestation affecting beech trees (Fagus spp.) in the midwestern and northeastern United States and southeastern Canada. BLD is attributed to the newly recognized nematode Litylenchus crenatae subsp. mccannii. First described in Lake County, Ohio, BLD leads to the disfigurement of leaves, canopy loss, and eventual tree mortality. Canopy loss limits photosynthetic capacity, likely impacting tree allocation to belowground carbon storage. Ectomycorrhizal fungi are root symbionts, which rely on the photosynthesis of autotrophs for nutrition and growth. Because BLD limits tree photosynthetic capacity, ECM fungi may receive less carbohydrates when associating with severely affected trees compared with trees without BLD symptoms. We sampled root fragments from cultivated F. grandifolia sourced from two provenances (Michigan and Maine) at two timepoints (fall 2020 and spring 2021) to test whether BLD symptom severity alters colonization by ectomycorrhizal fungi and fungal community composition. The studied trees are part of a long-term beech bark disease resistance plantation at the Holden Arboretum. We sampled from replicates across three levels of BLD symptom severity and compared fungal colonization via visual scoring of ectomycorrhizal root tip abundance. Effects of BLD on fungal communities were determined through high-throughput sequencing. We found that ectomycorrhizal root tip abundance was significantly reduced on the roots of individuals of the poor canopy condition resulting from BLD, but only in the fall 2020 collection. We found significantly more ectomycorrhizal root tips from root fragments collected in fall 2020 than in spring 2021, suggesting a seasonal effect. Community composition of ectomycorrhizal fungi was not impacted by tree condition but did vary between provenances. We found significant species level responses of ectomycorrhizal fungi between levels of both provenance and tree condition. Of the taxa analyzed, two zOTUs had significantly lower abundance in high-symptomatology trees compared with low-symptomatology trees. These results provide the first indication of a belowground effect of BLD on ectomycorrhizal fungi and contribute further evidence to the role of these root symbionts in studies of tree disease and forest pathology.

5.
Appl Plant Sci ; 7(4): e01223, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31024779

RESUMO

PREMISE OF THE STUDY: Mycorrhiza are critical to ecosystem functioning, but a lack of historical baseline data limits our understanding of the long-term belowground effects of global change. Herbarium specimens may provide this needed insight. However, it is unknown whether DNA of arbuscular mycorrhizal fungi (AMF) can be reliably extracted from vascular plant specimen roots. METHODS: We sampled roots from herbarium specimens of four herbaceous forest species collected in western Pennsylvania between 1881-2008. Using molecular methods (terminal restriction fragment length polymorphism and sequence analysis), we quantified AMF communities from specimen roots and tested for contamination. RESULTS: We successfully amplified AMF DNA from 44% (21/48) of the root but not leaf samples, indicating specimen contamination was negligible. As expected, there were significant differences in AMF composition between plant species (P < 0.05). However, no differences in AMF communities were detected through time, possibly due to limited sample size and low amplification rates in recent collections. DISCUSSION: Herbaria have potential as sources of valuable belowground microbial data to answer questions across geographic, temporal, and taxonomic scales otherwise not feasible. Ongoing methodological developments will only magnify this potential. Further tests are needed to determine curatorial practices that maximize this innovative use of herbarium specimens.

6.
Zoo Biol ; 37(5): 320-331, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30070393

RESUMO

We evaluated whether increasing the hay-to-grain ratio offered to Masai giraffe (Giraffa camelopardalis tippelskirchi) at Cleveland Metroparks Zoo would reduce oral stereotypies and alter feeding behaviors, maintain or increase serum calcium-to-phosphorus ratio, decrease serum insulin-to-glucose ratio and salivary insulin, and alter fecal bacterial community structure. Giraffe transitioned to a ∼90:10 hay-to-grain ratio in even increments over 8 weeks. A ration balancer was added during the seventh week of transition to ensure proper mineral and nutrient balance. We collected (1) behavioral data collected approximately daily using instantaneous focal sampling; (2) serum collections every other week for insulin-to-glucose and calcium-to-phosphorus ratio analysis and saliva weekly for insulin analysis; and (3) weekly fecal sample collections to examine changes in bacterial community structure during the 8 weeks preceding and following the diet change. After the diet change, giraffe spent significantly more time feeding and less time performing tongue and mouth stereotypies, people-directed and alert behaviors. Salivary and serum insulin and serum insulin-to-glucose ratio decreased, and fecal bacterial community structure changed significantly. However, serum calcium-to-phosphorus ratio remained >1:1 throughout the study. While further studies are needed to elucidate the nature and implications of the change in fecal bacterial community structure and metabolic hormones, the results of this study show promise for incremental improvements in health and welfare from feeding a higher proportion of forage in the diet.


Assuntos
Ração Animal , Dieta/veterinária , Fezes/microbiologia , Girafas/fisiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais de Zoológico , Grão Comestível , Metabolismo Energético , Comportamento Alimentar , Feminino , Masculino , Estado Nutricional
7.
FEMS Microbiol Lett ; 364(15)2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28859316

RESUMO

Cardiac disease is a leading cause of mortality in zoo-housed western lowland gorillas (Gorilla gorilla gorilla). The gut microbiome is associated with cardiac disease in humans and similarly the gut microbiome may be associated with cardiac diseases in close relatives of humans, such as gorillas. We assessed the relationship between cardiac disease and gut bacterial composition in eight zoo-housed male western lowland gorillas (N = 4 with and N = 4 without cardiac disease) utilizing 16S rRNA gene analysis on the Illumina MiSeq sequencing platform. We found bacterial composition differences between gorillas with and without cardiac disease. Bacterial operational taxonomic units from phyla Bacteroidetes, Spirochaetes, Proteobacteria and Firmicutes were significant indicators of cardiac disease. Our results suggest that further investigations between diet and cardiac disease could improve the management and health of zoo-housed populations of this endangered species.


Assuntos
Animais de Zoológico/microbiologia , Doenças dos Símios Antropoides/microbiologia , Bactérias/genética , Microbioma Gastrointestinal , Gorilla gorilla/microbiologia , Cardiopatias/veterinária , Animais , Animais de Zoológico/genética , Bactérias/classificação , Bactérias/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Dieta , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Microbioma Gastrointestinal/genética , Cardiopatias/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , RNA Ribossômico 16S
8.
Oecologia ; 183(4): 1077-1086, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28160090

RESUMO

Plant-soil feedbacks have been widely implicated as a driver of plant community diversity, and the coexistence prediction generated by a negative plant-soil feedback can be tested using the mutual invasibility criterion: if two populations are able to invade one another, this result is consistent with stable coexistence. We previously showed that two co-occurring Rumex species exhibit negative pairwise plant-soil feedbacks, predicting that plant-soil feedbacks could lead to their coexistence. However, whether plants are able to reproduce when at an establishment disadvantage ("invasibility"), or what drivers in the soil might correlate with this pattern, are unknown. To address these questions, we created experimental plots with heterogeneous and homogeneous soils using field-collected conditioned soils from each of these Rumex species. We then allowed resident plants of each species to establish and added invader seeds of the congener to evaluate invasibility. Rumex congeners were mutually invasible, in that both species were able to establish and reproduce in the other's resident population. Invaders of both species had twice as much reproduction in heterogeneous compared to homogeneous soils; thus the spatial arrangement of plant-soil feedbacks may influence coexistence. Soil mixing had a non-additive effect on the soil bacterial and fungal communities, soil moisture, and phosphorous availability, suggesting that disturbance could dramatically alter soil legacy effects. Because the spatial arrangement of soil patches has coexistence implications, plant-soil feedback studies should move beyond studies of mean effects of single patch types, to consider how the spatial arrangement of patches in the field influences plant communities.


Assuntos
Biomassa , Solo , Ecossistema , Plantas , Rumex , Sementes
9.
Ecology ; 97(7): 1783-1795, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27859152

RESUMO

Research suggests that a positive relationship exists between diversity and ecological function, yet the multi-trophic effects of biodiversity remain poorly understood. The resource complementarity hypothesis suggests that increasing the trait diversity of resources provides a more complete diet for consumers, elevating consumer feeding rates. Whereas previous tests of this mechanism have measured trait diversity as the variation of single traits or the richness of functional groups, we employed a multivariate trait index to manipulate the chemical diversity of temperate tree litter species in outdoor pond mesocosms. We inoculated outdoor mesocosms with diverse and multi-trophic communities of microbial and macro-consumer species that rely on leaf litter for energy and nutrients. Litter was provided at three levels of chemical trait diversity, a constant level of species richness, and an equal representation of all litter species. Over three months, we measured more than 65 responses, and assessed the effects of litter chemical diversity and chemical trait means (i.e., community-weighted means). We found that litter chemical diversity positively correlated with decomposition rate of leaf litter, but had no effect on biomass or density of producers and consumers. However, the pond communities often responded to chemical trait means, particularly those related to nutrients, structure, and defense. Our results suggest that resource complementarity does have some effect on the release of energy and nutrients from decomposing substrates in forest ponds, but does not have multi-trophic effects. Our results further suggest that loss of tree biodiversity could affect forest ecosystem functionality, and particularly the processes occurring in and around ponds and wetlands.


Assuntos
Ecossistema , Florestas , Folhas de Planta/química , Lagoas/química , Biodiversidade , Monitoramento Ambiental , Árvores
10.
FEMS Microbiol Ecol ; 92(3)2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26850158

RESUMO

Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.


Assuntos
Fungos/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Fósforo/análise , Microbiologia do Solo , Árvores/microbiologia , Biomassa , Ecossistema , Florestas , Fungos/genética , Fungos/isolamento & purificação , Fungos/metabolismo , Concentração de Íons de Hidrogênio , Micorrizas/genética , Micorrizas/isolamento & purificação , Micorrizas/metabolismo , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Árvores/crescimento & desenvolvimento
11.
Int J Mol Sci ; 16(10): 23630-50, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26445042

RESUMO

In this study, we investigated the effect of positively and negatively charged Fe3O4 and TiO2 nanoparticles (NPs) on the growth of soybean plants (Glycine max.) and their root associated soil microbes. Soybean plants were grown in a greenhouse for six weeks after application of different amounts of NPs, and plant growth and nutrient content were examined. Roots were analyzed for colonization by arbuscular mycorrhizal (AM) fungi and nodule-forming nitrogen fixing bacteria using DNA-based techniques. We found that plant growth was significantly lower with the application of TiO2 as compared to Fe3O4 NPs. The leaf carbon was also marginally significant lower in plants treated with TiO2 NPs; however, leaf phosphorus was reduced in plants treated with Fe3O4. We found no effects of NP type, concentration, or charge on the community structure of either rhizobia or AM fungi colonizing plant roots. However, the charge of the Fe3O4 NPs affected both colonization of the root system by rhizobia as well as leaf phosphorus content. Our results indicate that the type of NP can affect plant growth and nutrient content in an agriculturally important crop species, and that the charge of these particles influences the colonization of the root system by nitrogen-fixing bacteria.


Assuntos
Bactérias/efeitos dos fármacos , Compostos Férricos/farmacologia , Fungos/efeitos dos fármacos , Glycine max/efeitos dos fármacos , Nanopartículas/química , Titânio/farmacologia , Microbiota/efeitos dos fármacos , Micorrizas , Nódulos Radiculares de Plantas/microbiologia , Glycine max/microbiologia , Simbiose
12.
PLoS One ; 10(6): e0130383, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26107644

RESUMO

Recent global declines, extirpations and extinctions of wildlife caused by newly emergent diseases highlight the need to improve our knowledge of common environmental factors that affect the strength of immune defense traits. To achieve this goal, we examined the influence of acidification and shading of the larval environment on amphibian skin-associated innate immune defense traits, pre and post-metamorphosis, across two populations of American Bullfrogs (Rana catesbeiana), a species known for its wide-ranging environmental tolerance and introduced global distribution. We assessed treatment effects on 1) skin-associated microbial communities and 2) post-metamorphic antimicrobial peptide (AMP) production and 3) AMP bioactivity against the fungal pathogen Batrachochytrium dendrobatidis (Bd). While habitat acidification did not affect survival, time to metamorphosis or juvenile mass, we found that a change in average pH from 7 to 6 caused a significant shift in the larval skin microbial community, an effect which disappeared after metamorphosis. Additionally, we found shifts in skin-associated microbial communities across life stages suggesting they are affected by the physiological or ecological changes associated with amphibian metamorphosis. Moreover, we found that post-metamorphic AMP production and bioactivity were significantly affected by the interactions between pH and shade treatments and interactive effects differed across populations. In contrast, there were no significant interactions between treatments on post-metamorphic microbial community structure suggesting that variation in AMPs did not affect microbial community structure within our study. Our findings indicate that commonly encountered variation in the larval environment (i.e. pond pH and degree of shading) can have both immediate and long-term effects on the amphibian innate immune defense traits. Our work suggests that the susceptibility of amphibians to emerging diseases could be related to variability in the larval environment and calls for research into the relative influence of potentially less benign anthropogenic environmental changes on innate immune defense traits.


Assuntos
Larva/crescimento & desenvolvimento , Metamorfose Biológica , Rana catesbeiana/crescimento & desenvolvimento , Rana catesbeiana/imunologia , Animais , Quitridiomicetos/imunologia , Rana catesbeiana/microbiologia
13.
FEMS Microbiol Ecol ; 91(6)2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25979478

RESUMO

Seasonal and interannual variability in temperature, precipitation and chemical resources may regulate fungal community structure in forests but the effect of such variability is still poorly understood. In this study, I examined changes in fungal communities over two years and how these changes were correlated to natural variation in soil conditions. Soil cores were collected every month for three years from permanent plots established in an old-growth hardwood forest, and molecular methods were used to detect fungal species. Species richness and diversity were not consistent between years with richness and diversity significantly affected by season in one year but significantly affected by depth in the other year. These differences were associated with variation in late winter snow cover. Fungal communities significantly varied by plot location, season and depth and differences were consistent between years but fungal species within the community were not consistent in their seasonality or in their preference for certain soil depths. Some fungal species, however, were found to be consistently correlated with soil chemistry across sampled years. These results suggest that fungal community changes reflect the behavior of the individual species within the community pool and how those species respond to local resource availability.


Assuntos
Fungos/classificação , Estações do Ano , Microbiologia do Solo , Solo/química , Árvores/microbiologia , Clima , Florestas , Fungos/genética , Fungos/crescimento & desenvolvimento , Consórcios Microbianos , Técnicas de Tipagem Micológica , Micorrizas , Raízes de Plantas/microbiologia , Neve
14.
AoB Plants ; 72015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25818073

RESUMO

Soil ecologists have debated the relative importance of dispersal limitation and ecological factors in determining the structure of soil microbial communities. Recent evidence suggests that 'everything is not everywhere', and that microbial communities are influenced by both dispersal limitation and ecological factors. However, we still do not understand the relative explanatory power of spatial and ecological factors, including plant species identity and even plant relatedness, for different fractions of the soil microbial community (i.e. bacterial and fungal communities). To ask whether factors such as plant species, soil chemistry, spatial location and plant relatedness influence rhizosphere community composition, we examined field-collected rhizosphere soil of seven congener pairs that occur at Bodega Bay Marine Reserve, CA, USA. We characterized differences in bacterial and fungal communities using terminal-restriction fragment length polymorphism. Plant species identity was the single best statistical predictor of both bacterial and fungal community composition in the root zone. Soil microbial community structure was also correlated with soil chemistry. The third best predictor of bacterial and fungal communities was spatial location, confirming that everything is not everywhere. Variation in microbial community composition was also related to combinations of spatial location, soil chemistry and plant relatedness, suggesting that these factors do not act independently. Plant relatedness explained less of the variation than plant species, soil chemistry, or spatial location. Despite some congeners occupying different habitats and being spatially distant, rhizosphere fungal communities of plant congeners were more similar than expected by chance. Bacterial communities from the same samples were only weakly similar between plant congeners. Thus, plant relatedness might influence soil fungal, more than soil bacterial, community composition.

15.
Mycorrhiza ; 25(6): 469-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25634800

RESUMO

The community of arbuscular mycorrhizal (AM) fungi colonizing roots of the forest herb Allium tricoccum Ait. (wild leek) was examined to assess whether colonization varied seasonally and spatially within the forest. Whole plants were collected to coincide with observed phenological stages, and the perennial tissue (i.e., the bulb) was used to analyze total C, N, and P over the growing season. AM fungal community composition, structure, and abundance were assessed in roots by terminal restriction fragment length polymorphism analysis and quantitative PCR. It was found that A. tricoccum rDNA co-amplified using the general AM primers NS31/AM1, and a new primer for qPCR was designed that discriminated against plant DNA to quantify AM colonization. Community structure of AM fungi did not vary seasonally, but did change spatially within the forest, and AM fungal communities were correlated with the presence of overstory tree species. Fungal colonization of roots, however, did change seasonally with a maximum observed in late winter and early spring following leaf emergence. Maximum AM fungal colonization was associated with declines in bulb N and P, suggesting that leaf emergence and growth were responsible for both declines in stored nutrients and increases in AM fungal colonization. Plant N and P contents increased between late summer and early spring while C contents remained unchanged. The observed increase in nutrient content during a time when A. tricoccum lacks leaves indicates that the roots or AM fungi are metabolically active and acquire nutrients during this time, despite an absence of photosynthesis and thus a direct supply of C from A. tricoccum.


Assuntos
Allium/microbiologia , Biota , Micorrizas/classificação , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia , Allium/química , Carbono/análise , Contagem de Colônia Microbiana , DNA Fúngico/genética , DNA Ribossômico/genética , Florestas , Tipagem Molecular , Técnicas de Tipagem Micológica , Micorrizas/genética , Nitrogênio/análise , Fósforo/análise , Raízes de Plantas/química , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Análise Espaço-Temporal
16.
BMC Microbiol ; 13: 78, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23574744

RESUMO

BACKGROUND: Human activities have greatly increased nitrogen (N) levels in natural habitats through atmospheric N deposition and nutrient leaching, which can have large effects on N cycling and other ecosystem processes. Because of the significant role microorganisms play in N cycling, high inputs of nitrogenous compounds, such as nitrate (NO3-), into natural ecosystems could have cascading effects on microbial community structure and the metabolic processes that microbes perform. To investigate the multiple effects of NO3- pollution on microbial communities, we created two shotgun metagenomes from vernal pool microcosms that were either enriched with a solution of 10 mg NO3--N (+NO3-) or received distilled water as a control (-N). RESULTS: After only 20 hours of exposure to NO3-, the initial microbial community had shifted toward one containing a higher proportional abundance of stress tolerance and fermentation environmental gene tags (EGTs). Surprisingly, we found no changes to N metabolism EGTs, even though large shifts in denitrification rates were seen between the +NO3- and -N microcosms. Thus, in the absence of NO3- addition, it is plausible that the microbes used other respiratory pathways for energy. Respiratory pathways involving iron may have been particularly important in our -N microcosms, since iron acquisition EGTs were proportionally higher in the -N metagenome. Additionally, we noted a proportional increase in Acidobacteria and Alphaproteobacteria EGTs in response to NO3- addition. These community shifts in were not evident with TRFLP, suggesting that metagenomic analyses may detect fine-scale changes not possible with community profiling techniques. CONCLUSIONS: Our results suggest that the vernal pool microbial communities profiled here may rely on their metabolic plasticity for growth and survival when certain resources are limiting. The creation of these metagenomes also highlights how little is known about the effects of NO3- pollution on microbial communities, and the relationship between community stability and function in response to disturbance.


Assuntos
Metagenômica/métodos , Nitratos/análise , Ecossistema , Nitrogênio/análise , Microbiologia do Solo
17.
New Phytol ; 197(4): 1300-1310, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23311946

RESUMO

Feedbacks between soil communities and plants may determine abundance and diversity in plant communities by influencing fitness and competitive outcomes. We tested the core hypotheses of soil community feedback theory: plant species culture distinct soil communities that alter plant performance and the outcome of interspecific competition. We applied this framework to inform the repeated dominance of Solidago canadensis in old-field communities. In glasshouse experiments, we examined the effects of soil communities on four plant species' performance in monoculture and outcomes of interspecific competition. We used terminal restriction fragment length polymorphism (TRFLP) analysis to infer differences in the soil communities associated with these plant species. Soil community origin had strong effects on plant performance, changed the intensity of interspecific competition and even reversed whether plant species were limited by conspecifics or heterospecifics. These plant-soil feedbacks are strong enough to upend winners and losers in classic competition models. Plant species cultured significantly different mycorrhizal fungal and bacterial soil communities, indicating that these feedbacks are likely microbiotic in nature. In old-fields and other plant communities, these soil feedbacks appear common, fundamentally alter the intensity and nature of plant competition and potentially maintain diversity while facilitating the dominance of So. canadensis.


Assuntos
Modelos Biológicos , Microbiologia do Solo , Solidago/fisiologia , Biodiversidade , Dinâmica Populacional , Solidago/crescimento & desenvolvimento , Solidago/microbiologia , Especificidade da Espécie
18.
PLoS One ; 7(11): e48946, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23145035

RESUMO

Many temperate forests of the Northeastern United States and Europe have received significant anthropogenic acid and nitrogen (N) deposition over the last century. Although temperate hardwood forests are generally thought to be N-limited, anthropogenic deposition increases the possibility of phosphorus (P) limiting productivity in these forest ecosystems. Moreover, inorganic P availability is largely controlled by soil pH and biogeochemical theory suggests that forests with acidic soils (i.e.,

Assuntos
Ecossistema , Micorrizas/metabolismo , Fósforo/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Árvores/metabolismo , Árvores/microbiologia , Biomassa , Concentração de Íons de Hidrogênio , Ohio , Solo , Microbiologia do Solo
19.
J Environ Qual ; 41(6): 1951-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23128752

RESUMO

Cold climate cities with green infrastructure depend on soil bacteria to remove nutrients from road salt-enriched stormwater. Our research examined how bacterial communities in laboratory columns containing bioretention media responded to varying concentrations of salt exposure from artificial stormwater and the effect of bacteria and salt on column effluent concentrations. We used a factorial design with two bacteria treatments (sterile, nonsterile) and three salt concentrations (935, 315, and 80 ppm), including a deionized water control. Columns were repeatedly saturated with stormwater or deionized and then drained throughout 5 wk, with the last week of effluent analyzed for water chemistry. To examine bacterial communities, we extracted DNA from column bioretention media at time 0 and at week 5 and used molecular profiling techniques to examine bacterial community changes. We found that bacterial community taxa changed between time 0 and week 5 and that there was significant separation between taxa among salt treatments. Bacteria evenness was significantly affected by stormwater treatment, but there were no differences in bacterial richness or diversity. Soil bacteria and salt treatments had a significant effect on the effluent concentration of NO, PO, Cu, Pb, and Zn based on ANOVA tests. The presence of bacteria reduced effluent NO and Zn concentrations by as much as 150 and 25%, respectively, while having a mixed effect on effluent PO concentrations. Our results demonstrate how stormwater can affect bacterial communities and how the presence of soil bacteria improves pollutant removal by green infrastructure.


Assuntos
Bactérias/classificação , Bactérias/efeitos dos fármacos , Cloreto de Sódio/química , Cloreto de Sódio/toxicidade , Água/química , Microbiologia da Água
20.
FEMS Microbiol Ecol ; 81(3): 660-72, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22530997

RESUMO

Forest vernal pools experience strong environmental fluctuations, such as changes in water chemistry, which are often correlated with changes in microbial community structure. However, very little is known about the extent to which these community changes influence ecosystem processes in vernal pools. This study utilized experimental vernal pool microcosms to simulate persistent pH alteration and a pulse input of nitrate (NO3 -), which are common perturbations to temperate vernal pool ecosystems. pH was manipulated at the onset and microbial respiration was monitored throughout the study (122 days). On day 29, NO3 - was added and denitrification rate was measured and bacterial, fungal, and denitrifier communities were profiled on day 30 and day 31. Microbial respiration and both bacterial and fungal community structure were altered by the pH treatment, demonstrating both structural and functional microbial responses. The NO3 - pulse increased denitrification rate without associated changes in community structure, suggesting that microbial communities responded functionally without structural shifts. The functioning of natural vernal pools, which experience both persistent and short-term environmental change, may thus depend on the type and duration of the change or disturbance.


Assuntos
Bactérias/classificação , Ecossistema , Água Doce/microbiologia , Fungos/classificação , Nitratos/metabolismo , Microbiologia do Solo , Bactérias/isolamento & purificação , Desnitrificação , Água Doce/química , Fungos/isolamento & purificação , Concentração de Íons de Hidrogênio , Folhas de Planta/microbiologia , Estações do Ano , Solo/química , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...