Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338703

RESUMO

Phage therapeutics offer a potentially powerful approach for combating multidrug-resistant bacterial infections. However, to be effective, phage therapy must overcome existing and developing phage resistance. While phage cocktails can reduce this risk by targeting multiple receptors in a single therapeutic, bacteria have mechanisms of resistance beyond receptor modification. A rapidly growing body of knowledge describes a broad and varied arsenal of antiphage systems encoded by bacteria to counter phage infection. We sought to understand the types and frequencies of antiphage systems present in a highly diverse panel of Pseudomonas aeruginosa clinical isolates utilized to characterize novel antibacterials. Using the web-server tool PADLOC (prokaryotic antiviral defense locator), putative antiphage systems were identified in these P. aeruginosa clinical isolates based on sequence homology to a validated and curated catalog of known defense systems. Coupling this host bacterium sequence analysis with host range data for 70 phages, we observed a correlation between existing phage resistance and the presence of higher numbers of antiphage systems in bacterial genomes. We were also able to identify antiphage systems that were more prevalent in highly phage-resistant P. aeruginosa strains, suggesting their importance in conferring resistance.


Assuntos
Bacteriófagos , Fenômenos Bioquímicos , Terapia por Fagos , Infecções por Pseudomonas , Humanos , Bacteriófagos/genética , Pseudomonas aeruginosa , Infecções por Pseudomonas/terapia , Infecções por Pseudomonas/microbiologia
2.
Microbiol Resour Announc ; 13(1): e0095423, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38032190

RESUMO

We describe the genome of a lytic phage EKq1 isolated on Klebsiella quasipneumoniae, with activity against Klebsiella pneumoniae. EKq1 is an unclassified representative of the class Caudoviricetes, similar to Klebsiella phages VLCpiS8c, phiKp_7-2, and vB_KleS-HSE3. The 48,244-bp genome has a GC content of 56.43% and 63 predicted protein-coding genes.

3.
Microbiol Resour Announc ; 12(7): e0019223, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338419

RESUMO

We describe the genome of a lytic phage, ESa2, isolated from environmental water and specific for Staphylococcus aureus. ESa2 belongs to the family Herelleviridae and genus Kayvirus. Its genome consists of 141,828 bp, with 30.25% GC content, 253 predicted protein-coding sequences, 3 tRNAs, and 10,130-bp-long terminal repeats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...