Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 103(2): 231-235, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36196035

RESUMO

NTHL1-associated tumor syndrome (NATS) is an autosomal recessive condition characterized by an increased risk for colorectal polyposis and colorectal cancer (CRC). Only 46 case reports have been previously published. In a retrospective review, we analyzed the clinical histories of six patients found to have NATS after genetic counseling and testing. NATS appears to be associated with an increased risk for colorectal polyposis, CRC, female breast cancer, meningiomas, and endometrial cancer. Although research is limited, prior publications have reported a multi-tumor predisposition for individuals with biallelic pathogenic or likely pathogenic variants in NTHL1. Additional data are necessary to further define the cancer risks so affected individuals can be appropriately managed.


Assuntos
Polipose Adenomatosa do Colo , Neoplasias Colorretais , Desoxirribonuclease (Dímero de Pirimidina) , Feminino , Humanos , Polipose Adenomatosa do Colo/diagnóstico , Polipose Adenomatosa do Colo/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Desoxirribonuclease (Dímero de Pirimidina)/genética , Predisposição Genética para Doença , Neoplasias da Mama/genética , Meningioma/genética , Neoplasias do Endométrio/genética
2.
J Am Chem Soc ; 143(41): 16976-16992, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34618454

RESUMO

Semiconducting polymer dots (Pdots) have emerged as versatile probes for bioanalysis and imaging at the single-particle level. Despite their utility in multiplexed analysis, deep blue Pdots remain rare due to their need for high-energy excitation and sensitivity to photobleaching. Here, we describe the design of deep blue fluorophores using structural constraints to improve resistance to photobleaching, two-photon absorption cross sections, and fluorescence quantum yields using the hexamethylazatriangulene motif. Scanning tunneling microscopy was used to characterize the electronic structure of these chromophores on the atomic scale as well as their intrinsic stability. The most promising fluorophore was functionalized with a polymerizable acrylate handle and used to give deep-blue fluorescent acrylic polymers with Mn > 18 kDa and D < 1.2. Nanoprecipitation with amphiphilic polystyrene-graft-(carboxylate-terminated poly(ethylene glycol)) gave water-soluble Pdots with blue fluorescence, quantum yields of 0.81, and molar absorption coefficients of (4 ± 2) × 108 M-1 cm-1. This high brightness facilitated single-particle visualization with dramatically improved signal-to-noise ratio and photobleaching resistance versus an unencapsulated dye. The Pdots were then conjugated with antibodies for immunolabeling of SK-BR3 human breast cancer cells, which were imaged using deep blue fluorescence in both one- and two-photon excitation modes.

3.
Nat Commun ; 9(1): 3211, 2018 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-30097562

RESUMO

Coordination chemistry relies on harnessing active metal sites within organic matrices. Polynuclear complexes-where organic ligands bind to several metal atoms-are relevant due to their electronic/magnetic properties and potential for functional reactivity pathways. However, their synthesis remains challenging; few geometries and configurations have been achieved. Here, we synthesise-via supramolecular chemistry on a noble metal surface-one-dimensional metal-organic nanostructures composed of terpyridine (tpy)-based molecules coordinated with well-defined polynuclear iron clusters. Combining low-temperature scanning probe microscopy and density functional theory, we demonstrate that the coordination motif consists of coplanar tpy's linked via a quasi-linear tri-iron node in a mixed (positive-)valence metal-metal bond configuration. This unusual linkage is stabilised by local accumulation of electrons between cations, ligand and surface. The latter, enabled by bottom-up on-surface synthesis, yields an electronic structure that hints at a chemically active polynuclear metal centre, paving the way for nanomaterials with novel catalytic/magnetic functionalities.

4.
ACS Nano ; 12(7): 6545-6553, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29911862

RESUMO

Supramolecular chemistry protocols applied on surfaces offer compelling avenues for atomic-scale control over organic-inorganic interface structures. In this approach, adsorbate-surface interactions and two-dimensional confinement can lead to morphologies and properties that differ dramatically from those achieved via conventional synthetic approaches. Here, we describe the bottom-up, on-surface synthesis of one-dimensional coordination nanostructures based on an iron (Fe)-terpyridine (tpy) interaction borrowed from functional metal-organic complexes used in photovoltaic and catalytic applications. Thermally activated diffusion of sequentially deposited ligands and metal atoms and intraligand conformational changes lead to Fe-tpy coordination and formation of these nanochains. We used low-temperature scanning tunneling microscopy and density functional theory to elucidate the atomic-scale morphology of the system, suggesting a linear tri-Fe linkage between facing, coplanar tpy groups. Scanning tunneling spectroscopy reveals the highest occupied orbitals, with dominant contributions from states located at the Fe node, and ligand states that mostly contribute to the lowest unoccupied orbitals. This electronic structure yields potential for hosting photoinduced metal-to-ligand charge transfer in the visible/near-infrared. The formation of this unusual tpy/tri-Fe/tpy coordination motif has not been observed for wet chemistry synthetic methods and is mediated by the bottom-up on-surface approach used here, offering pathways to engineer the optoelectronic properties and reactivity of metal-organic nanostructures.

5.
Phys Chem Chem Phys ; 18(16): 11008-16, 2016 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-27045440

RESUMO

The adsorption of functional molecules on insulator surfaces is of great interest to molecular and organic electronics. Here, we present a systematic investigation of the geometric and electronic properties of perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) and C60 on KBr(001) using density functional theory and non-contact atomic force microscopy to reveal the interplay of interactions between aromatic molecules and insulating substrates. Energetic and structural details are discussed, as well as electronic structures, e.g. local electronic density of states, (differential) charge density, and Bader charge analysis, were inspected. Electrostatics was found to be the primary interaction mechanism for systems of PTCDA and C60 adsorbed on KBr, which can be further promoted by electronic hybridizations of non-polar, but polarizable, molecules with substrates, e.g. C60/KBr(001). Electronic hybridization, depending on the polarizability of the π-system, may be suppressed by introducing high electron affinity atoms, e.g. O, into the molecule. Besides, we investigate molecules adsorbed on two-layer KBr(001) covered Cu(001), in which no hybridisation was found between PTCDA and the metal underneath, but a C-Br-Cu hybridized state in C60/KBr(001)/Cu(001). Since the interaction mechanism is dominated by electrostatics, it is concluded that alkali-halides are interesting and important materials for investigation, due to the minor influence on the molecular electronic structure, which may inspire new research fields of electronics.


Assuntos
Anidridos/química , Brometos/química , Perileno/análogos & derivados , Compostos de Potássio/química , Eletricidade Estática , Microscopia de Força Atômica , Perileno/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...