Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 100, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39001997

RESUMO

An isolate of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore forming bacterium was originally isolated from soil when screening and bioprospecting for plant beneficial microorganisms. Phylogenetic analysis of the 16S rRNA gene sequences indicated that this strain was closely related to Lysinibacillus fusiformis NRRL NRS-350T (99.7%) and Lysinibacillus sphaericus NRRL B-23268T (99.2%). In phenotypic characterization, the novel strain was found to grow between 10 and 45 °C and tolerate up to 8% (w/v) NaCl. Furthermore, the strain grew in media with pH 5 to 10 (optimal growth at pH 7.0). The predominant cellular fatty acids were observed to be iso-C15: 0 (52.3%), anteiso-C15: 0 (14.8%), C16:1ω7C alcohol (11.2%), and C16: 0 (9.5%). The cell-wall peptidoglycan contained lysine-aspartic acid, the same as congeners. A draft genome was assembled and the DNA G+C content was determined to be 37.1% (mol content). A phylogenomic analysis on the core genome of the new strain and 5 closest type strains of Lysinibacillus revealed this strain formed a distinct monophyletic clade with the nearest neighbor being Lysinibacillus fusiformis. DNA-DNA relatedness studies using in silico DNA-DNA hybridizations (DDH) showed this species was below the species threshold of 70%. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Lysinibacillus, for which the name Lysinibacillus pinottii sp. nov. is proposed, with type strain PB211T (= NRRL B-65672T, = CCUG 77181T).


Assuntos
Bacillaceae , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Bacillaceae/genética , Bacillaceae/classificação , Bacillaceae/isolamento & purificação , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Peptidoglicano , Animais , Genoma Bacteriano , Análise de Sequência de DNA , Parede Celular/química
2.
Phytopathology ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776137

RESUMO

Plant-microbe interaction research has had a transformative trajectory, from individual microbial isolate studies to comprehensive analyses of plant microbiomes within the broader phytobiome framework. Acknowledging the indispensable role of plant microbiomes in shaping plant health, agriculture, and ecosystem resilience, we underscore the urgent need for sustainable crop production strategies in the face of contemporary challenges. We discuss how the synergies between advancements in 'omics technologies and artificial intelligence can help advance the profound potential of plant microbiomes. Furthermore, we propose a multifaceted approach encompassing translational considerations, transdisciplinary research initiatives, public-private partnerships, regulatory policy development, and pragmatic expectations for the practical application of plant microbiome knowledge across diverse agricultural landscapes. We advocate for strategic collaboration and intentional transdisciplinary efforts to unlock the benefits offered by plant microbiomes and address pressing global issues in food security. By emphasizing a nuanced understanding of plant microbiome complexities and fostering realistic expectations, we encourage the scientific community to navigate the transformative journey from discoveries in the laboratory to field applications. As companies specializing in agricultural microbes and microbiomes undergo shifts, we highlight the necessity of understanding how to approach sustainable agriculture with site-specific management solutions. While cautioning against over-promising, we underscore the excitement of exploring the many impacts of microbiome-plant interactions. We emphasize the importance of collaborative endeavors with societal partners to accelerate our collective capacity to harness the diverse and yet-to-be-discovered beneficial activities of plant microbiomes.

3.
Antonie Van Leeuwenhoek ; 116(7): 615-630, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37138159

RESUMO

Lysinibacillus is a bacterial genus that has generated recent interest for its biotechnological potential in agriculture. Strains belonging to this group are recognized for their mosquitocidal and bioremediation activity. However, in recent years some reports indicate its importance as plant growth promoting rhizobacteria (PGPR). This research sought to provide evidence of the PGP activity of Lysinibacillus spp. and the role of the indole-3-acetic acid (IAA) production associated with this activity. Twelve Lysinibacillus spp. strains were evaluated under greenhouse conditions, six of which increased the biomass and root architecture of corn plants. In most cases, growth stimulation was evident at 108 CFU/mL inoculum concentration. All strains produced IAA with high variation between them (20-70 µg/mL). The bioinformatic identification of predicted genes associated with IAA production allowed the detection of the indole pyruvic acid pathway to synthesize IAA in all strains; additionally, genes for a tryptamine pathway were detected in two strains. Extracellular filtrates from all strain's cultures increased the corn coleoptile length in an IAA-similar concentration pattern, which demonstrates the filtrates had an auxin-like effect on plant tissue. Five of the six strains that previously showed PGPR activity in corn also promoted the growth of Arabidopsis thaliana (col 0). These strains induced changes in root architecture of Arabidopsis mutant plants (aux1-7/axr4-2), the partial reversion of mutant phenotype indicated the role of IAA on plant growth. This work provided solid evidence of the association of Lysinibacillus spp. IAA production with their PGP activity, which constitutes a new approach for this genus. These elements contribute to the biotechnological exploration of this bacterial genus for agricultural biotechnology.


Assuntos
Arabidopsis , Bacillaceae , Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Bactérias/metabolismo , Bacillaceae/genética , Bacillaceae/metabolismo , Arabidopsis/metabolismo , Plantas/metabolismo , Raízes de Plantas/microbiologia
4.
Antonie Van Leeuwenhoek ; 112(8): 1161-1167, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30820713

RESUMO

A strain of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore forming bacterium was originally isolated from rhizospheric soil of a pepper plant when screening and bioprospecting for plant beneficial microorganisms. Phylogenetic analysis of the 16S rRNA gene sequences indicated that this strain, PB300T, is closely related to Lysinibacillus macroides DMS 54T (99.6%) and Lysinibacillus xylanilyticus DSM 23493T (99.4%). In phenotypic characterisation, the novel strain was found to grow between 15 and 40 °C and tolerate up to 10% (w/v) NaCl. Furthermore, the strain was found to grow in media with pH 5 to 10 (optimal growth at pH 7.0). The predominant cellular fatty acids were observed to be iso-C15 : 0 (56.6 %), anteiso-C15 : 0 (14.6%), C16 :1ω7C alcohol (9.3%) and C16 : 0 (7.1%). The cell wall peptidoglycan contains lysine-aspartic acid, as in its close relatives. A draft genome was completed and the DNA G + C content was determined to be 37.5% (mol content). A phylogenomic analysis of the core genome of the new strain and 5 closely related type strains of the genus Lysinibacillus revealed that this strain formed a distinct monophyletic clade with the nearest neighbour being Lysinibacillus boronitolerans. DNA-DNA relatedness studies using in silico DNA-DNA hybridizations (DDH) showed relationships for the new strain were below the species threshold of 70%. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Lysinibacillus, for which the name Lysinibacillus capsici sp. nov. is proposed, with type strain PB300T (= NRRL B-65515T, = CCUG 72241T).


Assuntos
Bacillaceae/classificação , Bacillaceae/isolamento & purificação , Microbiologia do Solo , Bacillaceae/química , Bacillaceae/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Capsicum/crescimento & desenvolvimento , Parede Celular/química , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Peptidoglicano/análise , Filogenia , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...