Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(3): e17215, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429894

RESUMO

Tropospheric ozone (O3 ) threatens agroecosystems, yet its long-term effects on intricate plant-microbe-soil interactions remain overlooked. This study employed two soybean genotypes of contrasting O3 -sensitivity grown in field plots exposed elevated O3 (eO3 ) and evaluated cause-effect relationships with their associated soil microbiomes and soil quality. Results revealed long-term eO3 effects on belowground soil microbiomes and soil health surpass damage visible on plants. Elevated O3 significantly disrupted belowground bacteria-fungi interactions, reduced fungal diversity, and altered fungal community assembly by impacting soybean physiological properties. Particularly, eO3 impacts on plant performance were significantly associated with arbuscular mycorrhizal fungi, undermining their contribution to plants, whereas eO3 increased fungal saprotroph proliferation, accelerating soil organic matter decomposition and soil carbon pool depletion. Free-living diazotrophs exhibited remarkable acclimation under eO3 , improving plant performance by enhancing nitrogen fixation. However, overarching detrimental consequences of eO3 negated this benefit. Overall, this study demonstrated long-term eO3 profoundly governed negative impacts on plant-soil-microbiota interactions, pointing to a potential crisis for agroecosystems. These findings highlight urgent needs to develop adaptive strategies to navigate future eO3 scenarios.


Assuntos
Microbiota , Micorrizas , Ozônio , Solo/química , Ozônio/efeitos adversos , Ozônio/análise , Microbiologia do Solo , Glycine max
2.
Environ Pollut ; 334: 122122, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37399937

RESUMO

Wheat rusts, elevated ozone (O3), and carbon dioxide (CO2) are simultaneously impacting wheat production worldwide, but their interactions are not well understood. This study investigated whether near-ambient O3 is suppressive or conducive to stem rust (Sr) of wheat, considering the interactions with ambient and elevated CO2. Winter wheat variety 'Coker 9553' (Sr-susceptible; O3 sensitive) was inoculated with Sr (race QFCSC) following pre-treatment with four different concentrations of O3 (CF, 50, 70, and 90 ppbv) at ambient CO2 levels. Gas treatments were continued during the development of disease symptoms. Disease severity, measured as percent sporulation area (PSA), significantly increased relative to the CF control only under near-ambient O3 conditions (50 ppbv) in the absence of O3-induced foliar injury. Disease symptoms at higher O3 exposures (70 and 90 ppbv) were similar to or less than the CF control. When Coker 9553 was inoculated with Sr while exposed to CO2 (400; 570 ppmv) and O3 (CF; 50 ppbv) in four different combinations, and seven combinations of exposure timing and duration, PSA significantly increased only under continuous treatment with O3 for six weeks or pre-inoculation treatment for three weeks, suggesting that O3-predisposes wheat to the disease rather than enhancing disease post-inoculation. O3 singly and in combination with CO2 increased PSA on flag leaves of adult Coker 9553 plants while elevated CO2 alone had little effect on PSA. These findings show that sub-symptomatic O3 conditions are conducive to stem rust, contradicting the current consensus that biotrophic pathogens are suppressed by elevated O3. This suggests that sub-symptomatic O3 stress may enhance rust diseases in wheat-growing regions.


Assuntos
Ozônio , Triticum , Dióxido de Carbono/farmacologia , Folhas de Planta , Ozônio/toxicidade , Estações do Ano
3.
Cells ; 12(11)2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37296662

RESUMO

In plants, the timely degeneration of tapetal cells is essential for providing nutrients and other substances to support pollen development. Rapid alkalinization factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth, as well as defense against biotic and abiotic stresses. However, the functions of most of them remain unknown, while no RALF has been reported to involve tapetum degeneration. In this study, we demonstrated that a novel cysteine-rich peptide, EaF82, isolated from shy-flowering 'Golden Pothos' (Epipremnum aureum) plants, is a RALF-like peptide and displays alkalinizing activity. Its heterologous expression in Arabidopsis delayed tapetum degeneration and reduced pollen production and seed yields. RNAseq, RT-qPCR, and biochemical analyses showed that overexpression of EaF82 downregulated a group of genes involved in pH changes, cell wall modifications, tapetum degeneration, and pollen maturation, as well as seven endogenous Arabidopsis RALF genes, and decreased proteasome activity and ATP levels. Yeast two-hybrid screening identified AKIN10, a subunit of energy-sensing SnRK1 kinase, as its interacting partner. Our study reveals a possible regulatory role for RALF peptide in tapetum degeneration and suggests that EaF82 action may be mediated through AKIN10 leading to the alteration of transcriptome and energy metabolism, thereby causing ATP deficiency and impairing pollen development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cisteína/metabolismo , Flores , Pólen/genética , Peptídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
Sci Total Environ ; 864: 161008, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36549524

RESUMO

Tropospheric ozone (O3), a major air pollutant, leads to significant global yield loss in soybean [Glycine max (L.) Merr.]. Soybean cultivar 'Jake' shows O3 resilient traits in above-ground organs, but the root system remains sensitive to elevated O3 (eO3). Changing carbon (C) and nitrogen (N) resource composition during eO3 stress suggests that eO3 presumably alters belowground soil microbial communities and their driven nutrient transformation. Yet, the responses of belowground microbes to eO3 and their feedback on nutrient cycling in 'Jake' are unknown. In this study, we holistically investigated soil microbial communities associated with C and N dynamics and bacterial-fungal inter-kingdom networks in the rhizosphere and bulk soil at different developmental stages of 'Jake' grown under sub-ambient O3 [charcoal-filtered (CF) air, 12 h mean: 20 ppb] or eO3 (12 h mean: 87 ppb). The results demonstrated eO3 significantly decreased fungal diversity and complexity of microbial networks at different 'Jake' developmental stages, whereas bacterial diversity was more tolerant to eO3 in both bulk soil and rhizosphere. In the bulk soil, no O3-responsive microbial biomarkers were found to be associated with C and N content, implying eO3 may stimulate niche-based processes during 'Jake' growth. In contrast, this study identified O3-responsive microbial biomarkers that may contribute to the N acquisition (Chloroflexales) and C dynamics (Caldilineales, Thermomicrobiales, and Hypocreales) in the rhizosphere, which may support the O3 resilience of the 'Jake' cultivar. However, further investigation is required to confirm their specific contributions by determining changes in microbial gene expression. Overall, these findings conduce to an expanding knowledge base that O3 induces temporal and spatial changes in the effects of microbial and nutrient networks in the O3-tolerant agriculture ecosystems.


Assuntos
Chloroflexi , Microbiota , Ozônio , Glycine max , Ozônio/análise , Microbiologia do Solo , Bactérias , Solo
5.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34244138

RESUMO

Climate warming and elevated ozone (eO3) are important climate change components that can affect plant growth and plant-microbe interactions. However, the resulting impact on soil carbon (C) dynamics, as well as the underlying mechanisms, remains unclear. Here, we show that warming, eO3, and their combination induce tradeoffs between roots and their symbiotic arbuscular mycorrhizal fungi (AMF) and stimulate organic C decomposition in a nontilled soybean agroecosystem. While warming and eO3 reduced root biomass, tissue density, and AMF colonization, they increased specific root length and promoted decomposition of both native and newly added organic C. Also, they shifted AMF community composition in favor of the genus Paraglomus with high nutrient-absorbing hyphal surface over the genus Glomus prone to protection of soil organic C. Our findings provide deep insights into plant-microbial interactive responses to warming and eO3 and how these responses may modulate soil organic C dynamics under future climate change scenarios.

6.
Front Plant Sci ; 12: 647507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054894

RESUMO

Chloroplasts are organelles responsible for chlorophyll biosynthesis, photosynthesis, and biosynthesis of many metabolites, which are one of key targets for crop improvement. Elucidating and engineering genes involved in chloroplast development are important approaches for studying chloroplast functions as well as developing new crops. In this study, we report a long-lived albino mutant derived from a popular ornamental plant Epipremnum aureum 'Golden Pothos' which could be used as a model for analyzing the function of genes involved in chloroplast development and generating colorful plants. Albino mutant plants were isolated from regenerated populations of variegated 'Golden Pothos' whose albino phenotype was previously found to be due to impaired expression of EaZIP, encoding Mg-protoporphyrin IX monomethyl ester cyclase. Using petioles of the mutant plants as explants with a traceable sGFP gene, an efficient transformation system was developed. Expressing Arabidopsis CHL27 (a homolog of EaZIP) but not EaZIP in albino plants restored green color and chloroplast development. Interestingly, in addition to the occurrence of plants with solid green color, plants with variegated leaves and pale-yellow leaves were also obtained in the regenerated populations. Nevertheless, our study shows that these long-lived albino plants along with the established efficient transformation system could be used for creating colorful ornamental plants. This system could also potentially be used for investigating physiological processes associated with chlorophyll levels and chloroplast development as well as certain biological activities, which are difficult to achieve using green plants.

7.
Plant Sci ; 306: 110855, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33775362

RESUMO

Tropospheric ozone (O3) is a pollutant that leads to significant global yield loss in soybean [Glycine max (L.) Merr.]. To ensure soybean productivity in areas of rising O3, it is important to identify tolerant genotypes. This work describes the response of the high-yielding soybean cultivar 'Jake' to elevated O3 concentrations. 'Jake' was treated with either low O3 [charcoal-filtered (CF) air, 12 h mean: 20 ppb] or with O3-enriched air (12 h mean: 87 ppb) over the course of the entire growing season. In contrast to the absence of O3-induced leaf injury under low O3, elevated O3 caused severe leaf injury and decreased stomatal conductance and photosynthesis. Although elevated O3 reduced total leaf area, leaf number, and plant height at different developmental stages, above-ground and root biomass remained unchanged. Analyzing carbon and nitrogen content, we found that elevated O3 altered allocation of both elements, which ultimately led to a 15 % yield loss by decreasing seed size but not seed number. We concluded that cultivar 'Jake' possesses developmental strength to tolerate chronic O3 conditions, attributes that make it suitable breeding material for the generation of new O3 tolerant lines.


Assuntos
Carbono/metabolismo , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Glycine max/metabolismo , Nitrogênio/metabolismo , Ozônio/metabolismo , Sementes/efeitos dos fármacos , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Variação Genética , Genótipo , North Carolina
8.
Sci Total Environ ; 766: 144292, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33418251

RESUMO

High tropospheric ozone (O3) concentrations lead to significant global soybean (Glycine max) yield reductions. Research concerning O3 impacts on soybean has focused on the contributions of above-ground tissues. In this study, Mandarin (Ottawa) (O3-sensitive) and Fiskeby III (O3-tolerant) soybean genotypes provide contrasting materials to investigate O3 effects on root growth. We compared root morphological and proteomic changes when 16-day-old plants were treated with charcoal-filtered (CF) air or elevated O3 (80 ppb O3 for 7 h/day) in continuously stirred-tank reactors (CSTR) for 7 days. Our results showed that in Mandarin (Ottawa), decreased expression of enzymes involved in the tricarboxylic acid (TCA) cycle contributes to reduction of root biomass and diameter under elevated O3. In contrast, O3 tolerance in Fiskeby III roots was associated with O3-dependent induction of enzymes involved in glycolysis and O3-independent expression of enzymes involved in the ascorbate-glutathione cycle. We conclude that a decreased abundance of key redox enzymes in roots due to limited carbon availability rapidly alters root growth under O3 stress. However, maintaining a high abundance of enzymes associated with redox status and detoxification capability contributes to overall O3 tolerance in roots.


Assuntos
Poluentes Atmosféricos , Fabaceae , Ozônio , Carbono , Ozônio/toxicidade , Folhas de Planta , Proteômica , Glycine max
9.
Environ Sci Technol ; 53(19): 11204-11213, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31465213

RESUMO

Elevated atmospheric CO2 (eCO2) often increases soil N2O emissions, but the underlying mechanisms remain largely unknown. One hypothesis suggests that high N2O emissions may stem from increased denitrification induced by CO2 enhancement of plant carbon (C) allocation belowground. However, direct evidence illustrating linkages among N2O emissions, plant C allocation, and denitrifying microbes under eCO2 is still lacking. We examined the impact of eCO2 on plant C allocation to roots and their associated arbuscular mycorrhizal fungi and its subsequent effects on N2O emissions and denitrifying microbes in the presence of two distinct N sources, ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N). Our results showed that the form of the N inputs dominated the effects of eCO2 on N2O emissions: eCO2 significantly increased N2O emissions with NO3--N inputs but had no effect with NH4+-N inputs. eCO2 increased plant biomass N more with NH4+-N than with NO3--N inputs, likely reducing microbial access to available N under NH4+-N inputs and/or contributing to higher N2O emissions under NO3--N inputs. eCO2 enhanced root and mycorrhizal N uptake and also increased N2O emissions under NO3--N inputs. Further, eCO2 enhancement of N2O emissions under NO3--N inputs concurred with a shift in the soil denitrifier community composition in favor of N2O-producing (nirK- and nirS-type) over N2O-consuming (nosZ-type) denitrifiers. Together, these results indicate that eCO2 stimulated N2O emissions mainly through altering plant N preference in favor of NH4+ over NO3- and thus stimulating soil denitrifiers and their activities. These findings suggest that effective management of N sources may mitigate N2O emissions by negating the eCO2 stimulation of soil denitrifying microbes and their activities.


Assuntos
Dióxido de Carbono , Óxido Nitroso , Desnitrificação , Nitrogênio , Solo , Microbiologia do Solo
10.
Plants (Basel) ; 8(8)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374882

RESUMO

Breeding wheat for higher grain yield can contribute to global food security and sustainable production on less land. Tropospheric ozone can injure wheat plants and subsequently reduce grain yield. Identification of ozone tolerance in the wheat genome can assist plant breeders in developing new sources of tolerant germplasm. Our objective was to use the 'Chinese Spring' monosomic lines to screen for ozone response and identify the chromosomic locations contributing to ozone tolerance based on foliar injury. Two methodologies, Continuous Stirred Tank Reactors and Outdoor Plant Environment Chambers, were used to expose wheat monosomic lines to varying concentrations and durations of ozone. Each wheat monosomic line in 'Chinese Spring' has a missing chromosome in each of the wheat subgenomes (A, B, and D). In both methodologies, we found significant and repeatable data to identify chromosome 7A as a major contributor to tolerance to ozone injury in 'Chinese Spring'. In every experiment, the absence of chromosome 7A resulted in significant injury to wheat due to ozone. This was not the case when any other chromosome was missing.

11.
Environ Sci Technol ; 52(19): 10956-10966, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30157374

RESUMO

Nitrous oxide (N2O) in the atmosphere is a major greenhouse gas and reacts with volatile organic compounds to create ozone (an air pollutant) in the troposphere. Climate change factors such as warming and elevated ozone (eO3) affect N2O fluxes, but the direction and magnitude of these effects are uncertain and the underlying mechanisms remain unclear. We examined the impact of simulated warming (control + 3.6 °C) and eO3 (control + 45 ppb) on soil N2O fluxes in a soybean agroecosystem. Results obtained showed that warming significantly increased soil labile C, microbial biomass, and soil N mineralization, but eO3 reduced these parameters. Warming enhanced N2O-producing denitrifers ( nirS- and nirK-type), corresponding to increases in both the rate and sum of N2O emissions. In contrast, eO3 significantly reduced both N2O-producing and N2O-consuming ( nosZ-type) denitrifiers but had no impact on N2O emissions. Further, eO3 offsets the effects of warming on soil labile C, microbial biomass, and the population size of denitrifiers but still increased N2O emissions, indicating a direct effect of temperature on N2O emissions. Together, these findings suggest that warming may promote N2O production through increasing both the abundance and activities of N2O-producing microbes, positively feeding back to the ongoing climate change.


Assuntos
Gases de Efeito Estufa , Ozônio , Óxido Nitroso , Solo , Microbiologia do Solo
12.
Environ Sci Technol ; 52(12): 6895-6902, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29771502

RESUMO

Reactive N inputs (Nr) may alleviate N-limitation of plant growth and are assumed to help sustain plant responses to the rising atmospheric CO2 (eCO2). However, Nr and eCO2 may elicit a cascade reaction that alters soil chemistry and nutrient availability, shifting the limiting factors of plant growth, particularly in acidic tropical and subtropical croplands with low organic matter and low nutrient cations. Yet, few have so far examined the interactive effects of Nr and eCO2 on the dynamics of soil cation nutrients and soil acidity. We investigated the cation dynamics in the plant-soil system with exposure to eCO2 and different N sources in a subtropical, acidic agricultural soil. eCO2 and Nr, alone and interactively, increased Ca2+ and Mg2+ in soil solutions or leachates in aerobic agroecosystems. eCO2 significantly reduced soil pH, and NH4+-N inputs amplified this effect, suggesting that eCO2-induced plant preference of NH4+-N and plant growth may facilitate soil acidification. This is, to our knowledge, the first direct demonstration of eCO2 enhancement of soil acidity, although other studies have previously shown that eCO2 can increase cation release into soil solutions. Together, these findings provide new insights into the dynamics of cation nutrients and soil acidity under future climatic scenarios, highlighting the urgency for more studies on plant-soil responses to climate change in acidic tropical and subtropical ecosystems.


Assuntos
Nitrogênio , Solo , Dióxido de Carbono , Cátions , Ecossistema , Concentração de Íons de Hidrogênio
13.
J Environ Sci (China) ; 66: 31-40, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29628099

RESUMO

Tropospheric ozone (O3) is a major air pollutant and causes serious injury to vegetation. To protect sensitive plants from O3 damage, several agrochemicals have been assessed, including cytokinin (e.g., kinetin, KIN) and ethylenediurea (EDU) with cytokinin-like activity. In higher plant, leaves are primarily injured by O3 and protective agrochemicals are often applied by leaf spraying. To our knowledge, the mitigating abilities of EDU and KIN have not been compared directly in a realistic setup. In the present research, impacts of elevated O3 (2× ambient O3, 24hr per day, for 8days) on an O3 sensitive line (S156) of snap bean (Phaseolus vulgaris), which is often used for biomonitoring O3 pollution, were studied in a free air controlled exposure system. The day before starting the O3 exposure, plants were sprayed with a solution of EDU (300ppm), KIN (1mmol/L) or distilled water, to compare their protective abilities. The results demonstrated that 2× ambient O3 inhibited net photosynthetic rate and stomatal conductance, increased the minimal fluorescence yield of the dark-adapted state, decreased the maximal quantum yield of PSII photochemistry, and led to visible injury. KIN and EDU alleviated the reduction of the photosynthetic performance, and visible injury under O3 fumigation. The plants sprayed with EDU showed greater ability to mitigate the O3 damage than those sprayed with KIN. Chlorophyll fluorescence imaging may have detected more precisely the differences in O3 response across the leaf than the conventional fluorometer.


Assuntos
Poluentes Atmosféricos/toxicidade , Ozônio/toxicidade , Phaseolus/fisiologia , Phaseolus/efeitos dos fármacos , Compostos de Fenilureia/farmacologia , Fotossíntese/efeitos dos fármacos , Substâncias Protetoras/farmacologia
14.
J Integr Plant Biol ; 60(3): 232-241, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29131514

RESUMO

Seed size and composition are important traits in food crops and can be affected by nutrient availability in the soil. Phosphorus (P) is a non-renewable, essential macronutrient, and P deficiency limits soybean (Glycine max) yield and quality. To investigate the associations of seed traits in low- and high-P environments, soybean recombinant inbred lines (RILs) from a cross of cultivars Fiskeby III and Mandarin (Ottawa) were grown under contrasting P availability environments. Traits including individual seed weight, seed number, and intact mature pod weight were significantly affected by soil P levels and showed transgressive segregation among the RILs. Surprisingly, P treatments did not affect seed composition or weight, suggesting that soybean maintains sufficient P in seeds even in low-P soil. Quantitative trait loci (QTLs) were detected for seed weight, intact pods, seed volume, and seed protein, with five significant QTLs identified in low-P environments and one significant QTL found in the optimal-P environment. Broad-sense heritability estimates were 0.78 (individual seed weight), 0.90 (seed protein), 0.34 (seed oil), and 0.98 (seed number). The QTLs identified under low P point to genetic regions that may be useful to improve soybean performance under limiting P conditions.


Assuntos
Biomassa , Glycine max/genética , Fósforo/farmacologia , Locos de Características Quantitativas/genética , Sementes/genética , Genoma de Planta , Endogamia , Fenótipo , Glycine max/efeitos dos fármacos , Glycine max/fisiologia , Estresse Fisiológico/efeitos dos fármacos
15.
Sci Total Environ ; 595: 556-566, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28399495

RESUMO

Natural perchlorate (ClO4-) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4- may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4-, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4- in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4- was transported from solutions into plants similarly to NO3- but preferentially to Cl- (4-fold). The ClO4- isotopic compositions of initial ClO4- reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4- uptake or accumulation. The ClO4- isotopic composition of field-grown snap beans was also consistent with that of ClO4- in varying proportions from irrigation water and precipitation. NO3- uptake had little or no effect on NO3- isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3- in hydroponic solutions and leaf extracts, consistent with partial NO3- reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4- in commercial produce, as illustrated by spinach, for which the ClO4- isotopic composition was similar to that of indigenous natural ClO4-. Our results indicate that some types of plants can accumulate and (presumably) release ClO4- to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4- and NO3- in plants may be useful for determining sources of fertilizers and sources of ClO4- in their growth environments and consequently in food supplies.


Assuntos
Monitoramento Ambiental , Hidroponia , Nitratos/análise , Percloratos/análise , Phaseolus/metabolismo , Poluentes Químicos da Água/análise , Isótopos de Nitrogênio/análise
16.
Sci Rep ; 7: 44158, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276518

RESUMO

Variegated 'Marble Queen' (Epipremnum aureum) plant has white (VMW) and green (VMG) sectors within the same leaf. The white sector cells containing undifferentiated chloroplasts are viable, but the underlying mechanism for their survival and whether these white cells would use any metabolites as signal molecules to communicate with the nucleus for maintaining their viability remain unclear. We analyzed and compared phytohormone levels with their precursors produced in chloroplasts between VMW and VMG, and further compared their transcriptomes to understand the consequences related to the observed elevated 12-oxo phytodienoic acid (OPDA), which was 9-fold higher in VMW than VMG. Transcriptomic study showed that a large group of OPDA-responsive genes (ORGs) were differentially expressed in VMW, including stress-related transcription factors and genes for reactive oxygen species (ROS) scavengers, DNA replication and repair, and protein chaperones. Induced expression of these ORGs could be verified in OPDA-treated green plants. Reduced level of ROS and higher levels of glutathione in VMW were further confirmed. Our results suggest that elevated OPDA or its related compounds are recruited by white cells as a signaling molecule(s) to up-regulate stress and scavenging activity related genes that leads to reduced ROS levels and provides survival advantages to the white cells.


Assuntos
Araceae/metabolismo , Ácidos Graxos Insaturados/metabolismo , Sequestradores de Radicais Livres/metabolismo , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sobrevivência Celular , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/biossíntese
17.
Sci Total Environ ; 580: 1046-1055, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27993470

RESUMO

Increased mixing ratios of ground-level ozone (O3) threaten individual plants, plant communities and ecosystems. In this sense, O3 biomonitoring is of great interest. The O3-sensitive S156 and the O3-tolerant R123 genotypes of snap bean (Phaseolus vulgaris L.) have been proposed as a potential tool for active biomonitoring of ambient O3. In the present study, an O3 biomonitoring was conducted, with the S156/R123 tool, along with a monitoring of O3 and other environmental conditions in an urban area in Athens, Greece, during the growing seasons of 2012 and 2013. Plant yield was evaluated to assess the effectiveness of AOT40 in interpreting O3-induced phytotoxicity. Across the two genotypes, an approximately two times lower total number of pods - and consequently lower bulk mass of seeds - was found in 2012 than in 2013, although there was no significant difference in the final AOT40 between the two years. No significant differences were observed in the stomatal density or conductance between the two genotypes, whereas it was estimated that, in both genotypes, the abaxial leaf surface contributes 2.7 fold to O3 intake in comparison to the adaxial one. By testing the role of ambient air temperature in outdoor plant environment chambers (OPECs), it was found that increased temperature limits mature pod formation and complicates interpretation of O3 impacts in terms of S156/R123 yields ratios. This is the first study providing evidence for a hormetic response of plants to ambient air temperature. This study also points out the complexity of using yield as a measure of O3 impact across different environments with the snap bean system, whereas visible foliar injury is more consistently related to O3 effects.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , Phaseolus/crescimento & desenvolvimento , Temperatura , Monitoramento Ambiental , Grécia , Folhas de Planta
18.
Theor Appl Genet ; 129(6): 1113-25, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26920548

RESUMO

KEY MESSAGE: Soybean quantitative trait loci for ozone response. Ground-level ozone reduces yield in crops such as soybean (Glycine max (L.) Merr.). Phenotypic variation has been observed for this trait in multiple species; however, breeding for ozone tolerance has been limited. A recombinant inbred population was developed from soybean genotypes differing in tolerance to ozone: tolerant Fiskeby III and sensitive Mandarin (Ottawa). Plants were exposed to ozone treatment for 5 days in greenhouse chambers followed by visual scoring for foliar injury. Mean injury score in the mid-canopy was 16 % for Fiskeby III, and 81 % for Mandarin (Ottawa). Injury scores were lower in younger leaves for both parents and progeny, compared to scores in the older leaves. Segregation was consistent with multigenic inheritance. Correlation coefficients for injury between leaf positions ranged from 0.34 to 0.81, with the closer leaf positions showing the greater correlation. Narrow sense heritability within an ozone treatment chamber was 0.59, 0.40, 0.29, 0.30, 0.19, and 0.35 for the 2nd, 3rd, 4th, 5th, 6th, and combined 3rd-5th main stem leaf positions (numbered acropetally), respectively, based on genotypic means over three independent replications. Quantitative trait loci (QTL) analysis showed that loci were associated with distinct leaf developmental stages. QTL were identified on Chromosome 17 for the 2nd and 3rd leaf positions, and on Chromosome 4 for the 5th and 6th leaf positions. Additional loci were identified on Chromosomes 6, 18, 19, and 20. Interacting loci were identified on Chromosomes 5 and 15 for injury on trifoliate 4. The ozone sensitive parent contributed one favorable allele for ozone response.


Assuntos
Glycine max/genética , Ozônio/efeitos adversos , Locos de Características Quantitativas , Alelos , Mapeamento Cromossômico , Genótipo , Fenótipo , Folhas de Planta/fisiologia , Glycine max/fisiologia
19.
Environ Sci Pollut Res Int ; 21(23): 13560-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25023654

RESUMO

The sensitivity to ozone of ten Bangladeshi wheat cultivars was tested by exposing plants to eight ozone exposure regimes (50, 60, 80, 100, 120, 135, 150, and 200 ppb for 14, 11, 8, 6, 5, 4, 3, and 1 days, respectively, for 8 h/day) in controlled environment chambers. Visible leaf injury, dry weight, chlorophyll, carotenoid content, leaf greenness (SPAD value), quantum yield of photosynthesis, and stomatal resistance were measured to evaluate response. Shoot biomass, total chlorophyll, leaf greenness, and carotenoid content were reduced in ozone-exposed plants. Based on the results of principal component analysis (PCA)-biplot analysis, the order of sensitivity to ozone was: Akbar >> Sufi ≥ Bijoy ≥ Shatabdi > Bari-26 ≥ Gourab > Bari-25 ≥ Prodip ≥ Sourav >> Kanchan. The most important parameters to discriminate cultivars with respect to ozone sensitivity were visible injury and chlorophyll b/a ratio, whereas quantum yield of photosynthesis was less important. Differences in stomatal resistance were not a significant factor in ozone response. Regression of cultivars' PCA scores against year of release revealed no trend, suggesting that ozone tolerance was not incorporated during cultivar breeding.


Assuntos
Ozônio/toxicidade , Triticum/efeitos dos fármacos , Bangladesh , Biomassa , Carotenoides/análise , Clorofila/análise , Fumigação , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Estações do Ano , Especificidade da Espécie , Triticum/química
20.
Physiol Plant ; 152(4): 749-62, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24796240

RESUMO

EaF82, a gene identified in previous studies of the variegated plant Epipremnum aureum, exhibited a unique expression pattern with greater transcript abundance in yellow sectors than green sectors of variegated leaves, but lower abundance in regenerated pale yellow plants than in green plants derived from leaf tissue culture. Studies of its full-length cDNA and promoter region revealed two members with only the EaF82a expressed. Immunoblotting confirmed that EaF82a encodes a 12 kDa protein and its accumulation consistent with its gene expression patterns in different color tissues. Transient expression of EaF82a-sGFP fusion proteins in protoplasts showed that EaF82a seems to be present in the cytosol as unidentified spots. Sequence motif search reveals a potential auxin responsive element in promoter region. Using transgenic Arabidopsis seedlings carrying EaF82a promoter driving the bacterial uidA (GUS) gene, an increased GUS activity was observed when IAA (indole-3-acetic acid) concentration was elevated. In E. aureum, EaF82a is more abundant at the site where axillary buds emerge and at the lower side of bending nodes where more IAA accumulates relative to the upper side. The measurement of endogenous IAA levels in different color tissues revealed the same pattern of IAA distribution as that of EaF82a expression, further supporting that EaF82a is an IAA responsive gene. EaF82a expression in etiolated transgenic Arabidopsis seedlings responded to IAA under the influence of light suggesting a microenvironment of uneven light condition affects the EaF82a transcript levels and protein accumulation in variegated leaves.


Assuntos
Araceae/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Araceae/genética , Araceae/efeitos da radiação , Genes Reporter , Luz , Família Multigênica , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos da radiação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão , Plântula/genética , Plântula/metabolismo , Plântula/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...