Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 33(9)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34727539

RESUMO

Surface-enhanced Raman spectroscopy (SERS) with pyramidal gold nanostructures increases the signal of Raman active analytes, since hotspots form at the edges and tip of a nanopyramid under illumination. 2D hexagonal arrays of pyramidal nanostructures with a quadratic base are fabricated through cost-effective nanosphere lithography and transferred onto elastomeric polydimethylsiloxane. By making use of the {111} crystal plane of a silicon (100) wafer, an inverted pyramidal array is etched, which serves as the complementary negative for the gold nanostructures. Either a continuous gold thin-film with protruding pyramids or separate isolated nanopyramids are produced. Three basic fabrication strategies are presented. The SERS enhancement is verified by Raman mapping of 4-mercaptobenzoic acid (4-MBA) molecules. Fabrication on a flexible substrate paves the way for future applications on curved surfaces orin situtunable resonances.

2.
J Neuroinflammation ; 15(1): 50, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463289

RESUMO

BACKGROUND: Echovirus (E) 30 (E-30) meningitis is characterized by neuroinflammation involving immune cell pleocytosis at the protective barriers of the central nervous system (CNS). In this context, infection of the blood-cerebrospinal fluid barrier (BCSFB), which has been demonstrated to be involved in enteroviral CNS pathogenesis, may affect the tight junction (TJ) and adherens junction (AJ) function and morphology. METHODS: We used an in vitro human choroid plexus epithelial (HIBCPP) cell model to investigate the effect of three clinical outbreak strains (13-311, 13-759, and 14-397) isolated in Germany in 2013, and compared them to E-30 Bastianni. Conducting transepithelial electrical resistance (TEER), paracellular dextran flux measurement, quantitative real-time polymerase chain reaction (qPCR), western blot, and immunofluorescence analysis, we investigated TJ and AJ function and morphology as well as strain-specific E-30 infection patterns. Additionally, transmission electron and focused ion beam microscopy electron microscopy (FIB-SEM) was used to evaluate the mode of leukocyte transmigration. Genome sequencing and phylogenetic analyses were performed to discriminate potential genetic differences among the outbreak strains. RESULTS: We observed a significant strain-dependent decrease in TEER with strains E-30 Bastianni and 13-311, whereas paracellular dextran flux was only affected by E-30 Bastianni. Despite strong similarities among the outbreak strains in replication characteristics and particle distribution, strain 13-311 was the only outbreak isolate revealing comparable disruptive effects on TJ (Zonula Occludens (ZO) 1 and occludin) and AJ (E-cadherin) morphology to E-30 Bastianni. Notwithstanding significant junctional alterations upon E-30 infection, we observed both para- and transcellular leukocyte migration across HIBCPP cells. Complete genome sequencing revealed differences between the strains analyzed, but no explicit correlation with the observed strain-dependent effects on HIBCPP cells was possible. CONCLUSION: The findings revealed distinct E-30 strain-specific effects on barrier integrity and junctional morphology. Despite E-30-induced barrier alterations leukocyte trafficking did not exclusively occur via the paracellular route.


Assuntos
Barreira Hematoencefálica/virologia , Líquido Cefalorraquidiano/virologia , Plexo Corióideo/virologia , Surtos de Doenças , Enterovirus Humano B/isolamento & purificação , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Linhagem Celular Tumoral , Sobrevivência Celular/fisiologia , Células Cultivadas , Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/metabolismo , Plexo Corióideo/ultraestrutura , Enterovirus Humano B/metabolismo , Humanos , Filogenia , Especificidade da Espécie
3.
Neurourol Urodyn ; 37(1): 89-98, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28370277

RESUMO

AIMS: To explore the ultrastructure of interstitial cells in the upper lamina propria of the human bladder, to describe the spatial relationships and to investigate cell-cell contacts. METHODS: Focused ion beam scanning electron microscopy (FIB-SEM), 3-View SEM and confocal laser scanning microscopy were used to analyze the 3D ultrastructure of the upper lamina propria in male and female human bladders. RESULTS: 3View-SEM image stacks as large as 59 × 59 × 17 µm3 (xyz) at a resolution of 16 × 16 × 50 nm3 and high resolution (5 × 5 × 10 nm3 ) FIB-SEM stacks could be analyzed. Interstitial cells with myoid differentiation (mIC) and fibroblast like interstitial cells (fIC) were the major cell types in the upper lamina propria. The flat, sheet-like ICs were oriented strictly parallel to the urothelium. No spindle shaped cells were present. We furthermore identified one branched cell (bIC) with several processes contacting urothelial cells by penetrating the basal membrane. This cell did not make any contacts to other ICs within the upper lamina propria. We found no evidence for the occurrence of telocytes in the upper lamina propria. CONCLUSIONS: Comprehensive 3D-ultrastructural analysis of the human bladder confirmed distinct subtypes of interstitial cells. We provide evidence for a foremost unknown direct connection between a branched interstitial cell and urothelial cells of which the functional role has still to be elucidated. 3D-ultrastructure analyses at high resolution are needed to further define the subpopulations of lamina propria cells and cell-cell interactions.


Assuntos
Células Epiteliais/ultraestrutura , Junções Intercelulares/ultraestrutura , Microscopia/métodos , Mucosa/ultraestrutura , Bexiga Urinária/ultraestrutura , Urotélio/ultraestrutura , Células Epiteliais/citologia , Feminino , Humanos , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Mucosa/citologia , Bexiga Urinária/citologia , Urotélio/citologia
4.
Water Res ; 108: 78-85, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816193

RESUMO

Carbon nanotube (CNT) membranes were produced from multi-walled CNTs by a filtration technique and used for the removal of the betablocker metoprolol by adsorptive and reactive processes. The reactivity of CNT membranes was enhanced by nanoparticulate zero-valent iron (NZVI) which was deposited on the CNT membranes by pulsed voltammetry applying defined number of pulses (Fe-CNT (100) and Fe-CNT (400) membranes). Surface analysis with SEM showed iron nanoparticle sizes between 19 and 425 nm. Pore size distribution for the different membranes was determined by capillary flow porometry (Galwick fluid). Pore size distribution for all membranes was similar (40 nm), which resulted in a water permeability typical for microfiltration membranes. Metoprolol was removed by the CNT membrane only by sorption, whereas the Fe-CNT membrane revealed also metoprolol degradation due to Fenton type reactions. Further application of electrochemical potentials on both the CNT and the Fe-CNT membranes improved the removal efficiencies to 74% for CNT membranes at 1 V and to 97% for Fe-CNT (400) membranes at 1 V. Seven transformation products have been identified for metoprolol by high-resolution mass spectrometry when electrochemical degradation was performed with CNT and Fe-CNT membranes. Additionally, two of the identified transformation products (TPs) were also observed for Fe-CNT membranes without the application of electrochemical potential. However, only 10% of the degraded metoprolol could be explained by the formation of TPs.


Assuntos
Ferro/química , Nanotubos de Carbono/química , Adsorção , Filtração , Nanopartículas
5.
Sci Rep ; 3: 3514, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24343236

RESUMO

Scanning Electron Microscopy (SEM) has long been the standard in imaging the sub-micrometer surface ultrastructure of both hard and soft materials. In the case of biological samples, it has provided great insights into their physical architecture. However, three of the fundamental challenges in the SEM imaging of soft materials are that of limited imaging resolution at high magnification, charging caused by the insulating properties of most biological samples and the loss of subtle surface features by heavy metal coating. These challenges have recently been overcome with the development of the Helium Ion Microscope (HIM), which boasts advances in charge reduction, minimized sample damage, high surface contrast without the need for metal coating, increased depth of field, and 5 angstrom imaging resolution. We demonstrate the advantages of HIM for imaging biological surfaces as well as compare and contrast the effects of sample preparation techniques and their consequences on sub-nanometer ultrastructure.


Assuntos
Hélio , Íons , Microscopia/métodos , Animais , Arabidopsis/ultraestrutura , Bactérias/ultraestrutura , Células HeLa/ultraestrutura , Humanos , Microscopia Eletrônica de Varredura/métodos , Nematoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...