Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 28(57): e202201858, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-35862259

RESUMO

Increasing the metal-to-ligand charge transfer (MLCT) excited state lifetime of polypyridine iron(II) complexes can be achieved by lowering the ligand's π* orbital energy and by increasing the ligand field splitting. In the homo- and heteroleptic complexes [Fe(cpmp)2 ]2+ (12+ ) and [Fe(cpmp)(ddpd)]2+ (22+ ) with the tridentate ligands 6,2''-carboxypyridyl-2,2'-methylamine-pyridyl-pyridine (cpmp) and N,N'-dimethyl-N,N'-di-pyridin-2-ylpyridine-2,6-diamine (ddpd) two or one dipyridyl ketone moieties provide low energy π* acceptor orbitals. A good metal-ligand orbital overlap to increase the ligand field splitting is achieved by optimizing the octahedricity through CO and NMe units between the coordinating pyridines which enable the formation of six-membered chelate rings. The push-pull ligand cpmp provides intra-ligand and ligand-to-ligand charge transfer (ILCT, LL'CT) excited states in addition to MLCT excited states. Ground and excited state properties of 12+ and 22+ were accessed by X-ray diffraction analyses, resonance Raman spectroscopy, (spectro)electrochemistry, EPR spectroscopy, X-ray emission spectroscopy, static and time-resolved IR and UV/Vis/NIR absorption spectroscopy as well as quantum chemical calculations.

2.
Chemistry ; 27(38): 9905-9918, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-33884671

RESUMO

A new base metal iron-cobalt dyad has been obtained by connection between a heteroleptic tetra-NHC iron(II) photosensitizer combining a 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine with 2,6-bis(3-methyl-imidazol-2-ylidene)-4,4'-bipyridine ligand, and a cobaloxime catalyst. This novel iron(II)-cobalt(III) assembly has been extensively characterized by ground- and excited-state methods like X-ray crystallography, X-ray absorption spectroscopy, (spectro-)electrochemistry, and steady-state and time-resolved optical absorption spectroscopy, with a particular focus on the stability of the molecular assembly in solution and determination of the excited-state landscape. NMR and UV/Vis spectroscopy reveal dissociation of the dyad in acetonitrile at concentrations below 1 mM and high photostability. Transient absorption spectroscopy after excitation into the metal-to-ligand charge transfer absorption band suggests a relaxation cascade originating from hot singlet and triplet MLCT states, leading to the population of the 3 MLCT state that exhibits the longest lifetime. Finally, decay into the ground state involves a 3 MC state. Attachment of cobaloxime to the iron photosensitizer increases the 3 MLCT lifetime at the iron centre. Together with the directing effect of the linker, this potentially makes the dyad more active in photocatalytic proton reduction experiments than the analogous two-component system, consisting of the iron photosensitizer and Co(dmgH)2 (py)Cl. This work thus sheds new light on the functionality of base metal dyads, which are important for more efficient and sustainable future proton reduction systems.

3.
Angew Chem Int Ed Engl ; 60(17): 9534-9539, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33565689

RESUMO

We present the η3 -coordination of the 2-phosphaethynthiolate anion in the complex (PN)2 La(SCP) (2) [PN=N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide)]. Structural comparison with dinuclear thiocyanate-bridged (PN)2 La(µ-1,3-SCN)2 La(PN)2 (3) and azide-bridged (PN)2 La(µ-1,3-N3 )2 La(PN)2 (4) complexes indicates that the [SCP]- coordination mode is mainly governed by electronic, rather than steric factors. Quantum mechanical investigations reveal large contributions of the antibonding π*-orbital of the [SCP]- ligand to the LUMO of complex 2, rendering it the ideal precursor for the first functionalization of the [SCP]- anion. Complex 2 was therefore reacted with CAACs which induced a selective rearrangement of the [SCP]- ligand to form the first CAAC stabilized group 15-group 16 fulminate-type complexes (PN)2 La{SPC(R CAAC)} (5 a,b, R=Ad, Me). A detailed reaction mechanism for the SCP-to-SPC isomerization is proposed based on DFT calculations.

4.
Inorg Chem ; 60(5): 2856-2865, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33569942

RESUMO

Here we explore the electronic structure of the diiron complex [(dppf)Fe(CO)3]0/+ [10/+; dppf = 1,1'-bis(diphenylphosphino)ferrocene] in two oxidation states by an advanced multitechnique experimental approach. A combination of magnetic circular dichroism, X-ray absorption and emission, high-frequency electron paramagnetic resonance (EPR), and Mössbauer spectroscopies is used to establish that oxidation of 10 occurs on the carbonyl iron ion, resulting in a low-spin iron(I) ion. It is shown that an unequivocal result is obtained by combining several methods. Compound 1+ displays slow spin dynamics, which is used here to study its geometric structure by means of pulsed EPR methods. Surprisingly, these data show an association of the tetrakis[3,5-bis(trifluoromethylphenyl)]borate counterion with 1+.

5.
Inorg Chem ; 59(13): 8762-8774, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32530276

RESUMO

In search of new ligand motifs for photoactive iron(II) complexes with long-lived MLCT states, a series of six complexes with tridentate amine-functionalized bis-n-heterocyclic carbene (NHC)-pyridine ligands is presented. In the homoleptic complexes imidazole-, methylimidazole-, or benzimidazole-2-ylidene, NHC donors are employed in combination with pyridine, functionalized in the 4-position by dimethylamine or dibenzylamine. The effects of these different functionalities on the electronic structure of the complexes are examined through detailed ground state characterization by NMR, single crystal X-ray diffraction, as well as electrochemical and spectroscopic methods. The net influence of these different functionalities on orbital-orbital and electrostatic ligand-iron interactions is investigated thoroughly by density functional theory, and changes in the excited state behavior and lifetimes are finally examined by ultrafast optical spectroscopy. Great deviations of the initially expected effects by substitution in 4-position on the photochemical properties are observed, together with a significantly increased π-acceptor interaction strength in the benzimidazole-2-ylidene functionalized complexes.

6.
Inorg Chem ; 59(6): 3551-3561, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32125149

RESUMO

While the Hieber anion [Fe(CO)3(NO)]- has been reincarnated in the last years as an active catalyst in organic synthesis, there is still a debate about the oxidation state of the central Fe atom and the resulting charge of the NO ligand. To shed new light on this question and to understand the Fe-NO interaction in the Hieber anion, it is investigated in comparison to the formal 3d8 reference Fe(CO)5 and the formal 3d10 reference [Fe(CO)4]2- by the combination of valence-to-core X-ray emission spectroscopy (VtC-XES), X-ray absorption near-edge structure spectroscopy (XANES), and high-energy-resolution fluorescence-detected XANES. In order to extract information about the electronic structure, time-dependent density functional theory and ground-state density functional theory calculations are applied. This combination of experimental and computational methods reveals that the electron density at the Fe center of the Hieber resembles that of the isoelectronic [Fe(CO)4]2-. These observations challenge recent descriptions of the Hieber anion and reopen the debate about the experimentally and computationally determined Fe oxidation state and charge on the NO ligand.

7.
Faraday Discuss ; 220(0): 113-132, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31532420

RESUMO

Established and recent hard X-ray spectroscopic methods in the form of conventional X-ray absorption near edge structure spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS), and the photon-in/photon-out techniques high energy resolution fluorescence detection XANES and valence-to-core X-ray emission spectroscopy (VtC-XES) provide unique opportunities to study mechanisms in metal-organic reactions. The combination of these techniques allows the determination of the local geometric and electronic structures in the form of the numbers of nearest neighbours, their types and distances around an X-ray absorbing atom and the highest occupied and lowest unoccupied molecular levels. Different sample cells for this purpose, which allow high pressure, electrochemical or multi-spectroscopic measurements under inert conditions, are presented and discussed. The potential of HERFD-XANES and VtC-XES to eliminate limitations of conventional EXAFS spectroscopy is established with case studies on the Hieber anion [Fe(CO)3(NO)]- and the iron hydride complex [Fe(CO)H(NO)(PPh3)2]. With VtC-XES the formation of an allyl complex by reaction of [Fe(CO)3(NO)]- in a catalytic nucleophilic substitution reaction can be followed. Combination of HERFD-XANES and VtC-XES allows the identification and investigation of hydride species, as well as their fate in chemical reactions. On the other hand, in order to investigate the active species formation in iron-catalysed cross coupling reactions, conventional XANES and EXAFS are the method of choice for the moment. For all examples, the advantages and limitations of the hard X-ray toolbox are commented on and the value of the individual methods are compared.

8.
Chemistry ; 25(51): 11826-11830, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152678

RESUMO

The complex class [Fe(N^N^C)(N^N^N)]+ with an Earth-abundant metal ion has been repeatedly suggested as a chromophore and potential photosensitizer on the basis of quantum chemical calculations. Synthesis and photophysical properties of the parent complex [Fe(pbpy)(tpy)]+ (Hpbpy=6-phenyl-2,2'-bipyridine and tpy=2,2':6',2''-terpyridine) of this new chromophore class are now reported. Ground-state characterization by X-ray diffraction, electrochemistry, spectroelectrochemistry, UV/Vis, and X-ray spectroscopy in combination with DFT calculations proves the high impact of the cyclometalating ligand on the electronic structure. The photophysical properties are significantly improved compared to the prototypical [Fe(tpy)2 ]2+ complex. In particular, the metal-to-ligand absorption extends into the near-IR and the 3 MLCT lifetime increases by 5.5, whereas the metal-centered excited triplet state is very short-lived.

9.
Chemistry ; 25(23): 5940-5949, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30786079

RESUMO

In the context of solar-to-chemical energy conversion, inspired by natural photosynthesis, the synthesis, electrochemical properties and photoinduced electron-transfer processes of three novel zinc(II)-gold(III) bis(porphyrin) dyads [ZnII (P)-AuIII (P)]+ are presented (P: tetraaryl porphyrin). Time-resolved spectroscopic studies indicated ultrafast dynamics (k ET 1 >1010  s-1 ) after visible-light excitation, which finally yielded a charge-shifted state [ZnII (P⋅+ )-AuII (P)]+ featuring a gold(II) center. The lifetime of this excited state is quite long due to a comparably slow charge recombination (k BET 2 ≈3×108  s-1 ). The [ZnII (P⋅+ )-AuII (P)]+ charge-shifted state is reductively quenched by amines in bimolecular reactions, yielding the neutral zinc(II)-gold(II) bis(porphyrin) ZnII (P)-AuII (P). The electronic nature of this key gold(II) intermediate, prepared by chemical or photochemical reduction, is elucidated by UV/Vis, X-band EPR, gold L3 -edge X-ray absorption near edge structure (XANES) and paramagnetic 1 H NMR spectroscopy as well as by quantum chemical calculations. Finally, the gold(II) site in ZnII (P)-AuII (P) is thermodynamically and kinetically competent to reduce an aryl azide to the corresponding aryl amine, paving the way to catalytic applications of gold(III) porphyrins in photoredox catalysis involving the gold(III/II) redox couple.

10.
Inorg Chem ; 58(10): 6609-6618, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-30596494

RESUMO

High energy resolution fluorescence detected XANES (HERFD-XANES) and valence-to-core X-ray emission spectroscopy (VtC-XES) are introduced as powerful tools to investigate hydride-iron interaction, the possible iron-iron bond, and iron spin state of the dinuclear tetra-hydrido complex [{5CpFe}2(µ-H)4] (1H, 5Cp = η5-C5 iPr5) by thoroughly accessing the geometric and electronic structure of this complex in comparison to the nonhydride reference [5CpCpFe] (1, Cp = C5H5). The so far observed most intense hydride induced signals in the pre-edge feature of the HERFD-XANES and in the VtC-XES spectra at the iron K-edge allow a precise analysis of the LUMO and HOMO states, respectively, by application of time-dependent density function theory (TD-DFT) and density functional theory (DFT) calculations. The results of these calculations are further employed to understand the oxidation state, spin states, and potential Fe-Fe bonds in this complex.

11.
Inorg Chem ; 57(1): 360-373, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29236487

RESUMO

Four homo- and heteroleptic complexes bearing both polypyridyl units and N-heterocyclic carbene (NHC) donor functions are studied as potential noble metal-free photosensitizers. The complexes [FeII(L1)(terpy)][PF6]2, [FeII(L2)2][PF6]2, [FeII(L1)(L3)][PF6]2, and [FeII(L3)2][PF6]2 (terpy = 2,2':6',2″ terpyridine, L1 = 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine, L2 = 2,6-bis[3-isopropylimidazol-2-ylidene]pyridine, L3 = 1-(2,2'-bipyridyl)-3-methylimidazol-2-ylidene) contain tridentate ligands of the C^N^C and N^N^C type, respectively, resulting in a Fe-NHC number between two and four. Thorough ground state characterization by single crystal diffraction, electrochemistry, valence-to-core X-ray emission spectroscopy (VtC-XES), and high energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) in combination with ab initio calculations show a correlation between the geometric and electronic structure of these new compounds and the number of the NHC donor functions. These results serve as a basis for the investigation of the excited states by ultrafast transient absorption spectroscopy, where the lifetime of the 3MLCT states is found to increase with the NHC donor count. The results demonstrate for the first time the close interplay between the number of NHC functionalities in Fe(II) complexes and their photochemical properties, as revealed in a comparison of the activity as photosensitizers in photocatalytic proton reduction.

12.
Inorg Chem ; 56(21): 13300-13310, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29058447

RESUMO

Two hydride catalysts [Fe(CO)(dppp)H(NO)] (dppp = 1,3-bis(diphenylphosphino)propane) and [Fe(CO)H(NO)(PPh3)2] in comparison with nonhydride analogues [Fe(dppe)(NO)2] (dppe = 1,3-bis(diphenylphosphino)ethane) and [Fe(NO)2(PPh3)2] are investigated with a combination of valence-to-core X-ray emission spectroscopy (VtC-XES) and high-energy resolution fluorescence detected X-ray absorption near-edge structure (HERFD-XANES). To fully understand the experiments and to obtain precise information about molecular levels being involved in the spectral signals, time-dependent density functional theory (TD-DFT) calculations and ground state density functional theory (DFT) calculations are necessary. An excellent agreement between experiment and theory allows the identification of particular spectral signals of the Fe-H group. Antibonding Fe-H interactions clearly contribute to pre-edge signals in HERFD-XANES spectra, while bonding Fe-H interactions cause characteristic signatures in the VtC-XES spectra. The sensitivity of both methods with respect to the Fe-H distance is demonstrated by a scanning simulation approach. The results open the way to study metal hydride complexes in situ, their formation, and their fate during catalytic reactions, using high-resolution XANES and valence-to-core X-ray emission spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...