Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 11(8)2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36009252

RESUMO

X-ray fluorescence (XRF) imaging is a highly sensitive non-invasive imaging method for detection of small element quantities in objects, from human-sized scales down to single-cell organelles, using various X-ray beam sizes. Our aim was to investigate the cellular uptake and distribution of Q10, a highly conserved coenzyme with antioxidant and bioenergetic properties. Q10 was labeled with iodine (I2-Q10) and individual primary human skin cells were scanned with nano-focused beams. Distribution of I2-Q10 molecules taken up inside the screened individual skin cells was measured, with a clear correlation between individual Q10 uptake and cell size. Experiments revealed that labeling Q10 with iodine causes no artificial side effects as a result of the labeling procedure itself, and thus is a perfect means of investigating bioavailability and distribution of Q10 in cells. In summary, individual cellular Q10 uptake was demonstrated by XRF, opening the path towards Q10 multi-scale tracking for biodistribution studies.

2.
Skin Pharmacol Physiol ; 35(2): 102-111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34619676

RESUMO

INTRODUCTION: Xerosis cutis is characterized by a decreased stratum corneum (SC) hydration and an impaired skin barrier function. Urea, the most prevalent natural moisturizing factor (NMF), is currently considered the gold standard. Its efficacy can further be increased by combining urea with other NMF and skin barrier lipids (SBLs). OBJECTIVE: We set out to evaluate physiological effects of a novel functional moisturizer containing 10% urea, additional NMF components, and a combination of SBLs on skin hydration and skin barrier integrity on a cellular and phenotypic level in female volunteers suffering from xerosis. METHODS: Two double-blind, vehicle-controlled clinical studies were conducted. In the first study, 44 female subjects having very dry body skin applied the moisturizer or its vehicle twice daily to their volar forearms. Twenty-four hours after a single product application as well as 24 h after 2 weeks of treatment, SC hydration was measured by corneometry. Skin barrier function was assessed by transepidermal water loss 24 h and 48 h after 2 weeks of regular use. Twenty-four hours after 2 weeks of application, skin tape stripping was performed, and urea content was determined in the 3rd strip by means of high-performance liquid chromatography/tandem mass spectrometry. In the second study, 22 women with self-reported very dry skin applied the moisturizer or vehicle twice daily to their volar forearms for 2 weeks. Then, suction blister samples were obtained for gene expression analysis using RT-PCR. RESULTS: Application of the actives led to significantly improved skin hydration and barrier function at all points in time. Compared to the vehicle, application of the moisturizer for 2 weeks resulted in a significant increase in SC urea content. Relative gene expression data revealed significant upregulation of genes associated with skin barrier function, hydration, differentiation, and lipid metabolism compared to the vehicle-treated area. CONCLUSIONS: Overall, our data demonstrate that the functional moisturizer provides an adequate bioavailability of urea and a beneficial biophysical impact on xerotic skin. Topical treatment with a combination of urea and additional NMF as well as SBL can modify mRNA expression of important epidermal genes stimulating cellular processes and functions. The well-tolerated novel functional moisturizer stimulates molecular mechanisms involved in skin hydration and barrier function and is a profoundly effective treatment option for xerosis cutis.


Assuntos
Biomimética , Dermatopatias , Epiderme/metabolismo , Feminino , Expressão Gênica , Humanos , Pele/metabolismo , Dermatopatias/metabolismo
3.
Biofactors ; 41(6): 383-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26648450

RESUMO

Ubiquinone (coenzyme Q10, Q10) represents an endogenously synthesized lipid-soluble antioxidant which is crucial for cellular energy production but is diminished with age and under the influence of external stress factors in human skin. Here, it is shown that topical Q10 treatment is beneficial with regard to effective Q10 replenishment, augmentation of cellular energy metabolism, and antioxidant effects. Application of Q10-containing formulas significantly increased the levels of this quinone on the skin surface. In the deeper layers of the epidermis the ubiquinone level was significantly augmented indicating effective supplementation. Concurrent elevation of ubiquinol levels suggested metabolic transformation of ubiquinone resulting from increased energy metabolism. Incubation of cultured human keratinocytes with Q10 concentrations equivalent to treated skin showed a significant augmentation of energy metabolism. Moreover, the results demonstrated that stressed skin benefits from the topical Q10 treatment by reduction of free radicals and an increase in antioxidant capacity.


Assuntos
Antioxidantes/administração & dosagem , Metabolismo Energético/efeitos dos fármacos , Pele/efeitos dos fármacos , Ubiquinona/análogos & derivados , Administração Tópica , Antioxidantes/metabolismo , Linhagem Celular , Suplementos Nutricionais , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Pele/metabolismo , Pele/patologia , Ubiquinona/administração & dosagem , Ubiquinona/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...