Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37974055

RESUMO

AIMS: To examine the effect of the phenolic compound pyrogallol on staphylococcal biofilm formation. METHODS AND RESULTS: In crystal violet biofilm assays, pyrogallol-reduced biofilm formation in Staphylococcus epidermidis ATCC 35984, Staph. epidermidis NRRL-B41021, Staphylococcus aureus USA300, and Staph. aureus Newman, without significantly impairing bacterial viability. Pyrogallol-mediated impairment of biofilm formation was likely due to induction of bacterial oxidative stress, as its effect was greater in catalase-deficient versus WT Staph. aureus, and biofilm production was rescued by exogenous catalase. The effect of pyrogallol on staphylococcal biofilm formation mirrored that of the known oxidant hydrogen peroxide, which also reduced biofilm formation in a dose-dependent manner. CONCLUSIONS: Pyrogallol reduces biofilm formation in S. aureus and Staph. epidermidis in a mechanism involving induction of bacterial oxidative stress.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Pirogalol/farmacologia , Catalase/genética , Staphylococcus , Infecções Estafilocócicas/microbiologia , Staphylococcus epidermidis , Biofilmes
2.
Pathog Dis ; 77(3)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31065694

RESUMO

Salmonella enterica Javiana is a leading cause of severe foodborne Salmonellosis. Despite its emergence as a major foodborne pathogen, little is known of how S. Javiana interacts with intestinal epithelial cells, or of potential methods for ameliorating the bacterial-host interaction. Using cell-based adhesion, invasion and lactate dehydrogenase release assays, we observed an invasive and cytotoxic effect of S. Javiana on intestinal epithelial cells. We assessed the effect of probiotic species of lactic acid bacteria (LAB) on the S. Javiana-host cell interaction, and hypothesized that LAB would reduce S. Javiana infectivity. Salmonella enterica Javiana invasion was significantly impaired in host cells pre-treated with live Lactobacillus acidophilus and Lactobacillus rhamnosus. In addition, pre-exposure of host cells to live L. acidophilus, L. rhamnosus and L. casei reduced S. Javiana-induced cytotoxicity, while heat-killed LAB cultures had no effect on S. Javiana invasion or cytotoxicity. qRT-PCR analysis revealed that S. Javiana exposed to L. acidophilus and L. rhamnosus exhibited reduced virulence gene expression. Moreover, pre-treating host cells with LAB prior to S. Javiana infection reduced host cell production of inflammatory cytokines. Data suggest a potential protective effect of L. acidophilus, L. rhamnosus and L. casei against intestinal epithelial infection and pathogen-induced damage caused by S. Javiana.


Assuntos
Antibiose , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Inflamação/microbiologia , Inflamação/patologia , Lactobacillus/crescimento & desenvolvimento , Salmonella enterica/crescimento & desenvolvimento , Aderência Bacteriana , Sobrevivência Celular , Citocinas/metabolismo , Endocitose , Perfilação da Expressão Gênica , Células HT29 , Humanos , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Virulência , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
3.
Infect Immun ; 84(1): 241-53, 2016 01.
Artigo em Inglês | MEDLINE | ID: mdl-26502911

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) causes invasive, drug-resistant skin and soft tissue infections. Reports that S. aureus bacteria survive inside macrophages suggest that the intramacrophage environment may be a niche for persistent infection; however, mechanisms by which the bacteria might evade macrophage phagosomal defenses are unclear. We examined the fate of the S. aureus-containing phagosome in THP-1 macrophages by evaluating bacterial intracellular survival and phagosomal acidification and maturation and by testing the impact of phagosomal conditions on bacterial viability. Multiple strains of S. aureus survived inside macrophages, and in studies using the MRSA USA300 clone, the USA300-containing phagosome acidified rapidly and acquired the late endosome and lysosome protein LAMP1. However, fewer phagosomes containing live USA300 bacteria than those containing dead bacteria associated with the lysosomal hydrolases cathepsin D and ß-glucuronidase. Inhibiting lysosomal hydrolase activity had no impact on intracellular survival of USA300 or other S. aureus strains, suggesting that S. aureus perturbs acquisition of lysosomal enzymes. We examined the impact of acidification on S. aureus intramacrophage viability and found that inhibitors of phagosomal acidification significantly impaired USA300 intracellular survival. Inhibition of macrophage phagosomal acidification resulted in a 30-fold reduction in USA300 expression of the staphylococcal virulence regulator agr but had little effect on expression of sarA, saeR, or sigB. Bacterial exposure to acidic pH in vitro increased agr expression. Together, these results suggest that S. aureus survives inside macrophages by perturbing normal phagolysosome formation and that USA300 may sense phagosomal conditions and upregulate expression of a key virulence regulator that enables its intracellular survival.


Assuntos
Catepsina D/imunologia , Glucuronidase/imunologia , Proteínas de Membrana Lisossomal/imunologia , Macrófagos/imunologia , Staphylococcus aureus Resistente à Meticilina/imunologia , Proteínas de Bactérias/biossíntese , Linhagem Celular , Humanos , Macrófagos/enzimologia , Macrófagos/microbiologia , Viabilidade Microbiana/imunologia , Fagocitose/imunologia , Fagossomos/microbiologia , Fator sigma/biossíntese , Infecções Estafilocócicas/microbiologia , Transativadores/biossíntese , Fatores de Transcrição , Fatores de Virulência
4.
mBio ; 6(4): e00705, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26173697

RESUMO

UNLABELLED: Bacterial infection can trigger cellular stress programs, such as the unfolded protein response (UPR), which occurs when misfolded proteins accumulate within the endoplasmic reticulum (ER). Here, we used the human pathogen methicillin-resistant Staphylococcus aureus (MRSA) as an infection model to probe how ER stress promotes antimicrobial function. MRSA infection activated the most highly conserved unfolded protein response sensor, inositol-requiring enzyme 1α (IRE1α), which was necessary for robust bacterial killing in vitro and in vivo. The macrophage IRE1-dependent bactericidal activity required reactive oxygen species (ROS). Viable MRSA cells excluded ROS from the nascent phagosome and strongly triggered IRE1 activation, leading to sustained generation of ROS that were largely Nox2 independent. In contrast, dead MRSA showed early colocalization with ROS but was a poor activator of IRE1 and did not trigger sustained ROS generation. The global ROS stimulated by IRE1 signaling was necessary, but not sufficient, for MRSA killing, which also required the ER resident SNARE Sec22B for accumulation of ROS in the phagosomal compartment. Taken together, these results suggest that IRE1-mediated persistent ROS generation might act as a fail-safe mechanism to kill bacterial pathogens that evade the initial macrophage oxidative burst. IMPORTANCE: Cellular stress programs have been implicated as important components of the innate immune response to infection. The role of the IRE1 pathway of the ER stress response in immune secretory functions, such as antibody production, is well established, but its contribution to innate immunity is less well defined. Here, we show that infection of macrophages with viable MRSA induces IRE1 activation, leading to bacterial killing. IRE1-dependent bactericidal activity required generation of reactive oxygen species in a sustained manner over hours of infection. The SNARE protein Sec22B, which was previously demonstrated to control ER-phagosome trafficking, was dispensable for IRE1-driven global ROS production but necessary for late ROS accumulation in bacteria-containing phagosomes. Our study highlights a key role for IRE1 in promoting macrophage bactericidal capacity and reveals a fail-safe mechanism that leads to the concentration of antimicrobial effector molecules in the macrophage phagosome.


Assuntos
Endorribonucleases/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/imunologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/imunologia , Viabilidade Microbiana/efeitos dos fármacos , Oxidantes/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Estresse do Retículo Endoplasmático , Perfilação da Expressão Gênica , Humanos , Macrófagos/microbiologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de DNA
5.
Infect Immun ; 79(12): 4850-7, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21911458

RESUMO

Macrophages are key mediators of antimicrobial defense and innate immunity. Innate intracellular defense mechanisms can be rapidly regulated at the posttranslational level by the coordinated addition and removal of ubiquitin by ubiquitin ligases and deubiquitinases (DUBs). While ubiquitin ligases have been extensively studied, the contribution of DUBs to macrophage innate immune function is incompletely defined. We therefore employed a small molecule DUB inhibitor, WP1130, to probe the role of DUBs in the macrophage response to bacterial infection. Treatment of activated bone marrow-derived macrophages (BMM) with WP1130 significantly augmented killing of the intracellular bacterial pathogen Listeria monocytogenes. WP1130 also induced killing of phagosome-restricted bacteria, implicating a bactericidal mechanism associated with the phagosome, such as the inducible nitric oxide synthase (iNOS). WP1130 had a minimal antimicrobial effect in macrophages lacking iNOS, indicating that iNOS is an effector mechanism for WP1130-mediated bacterial killing. Although overall iNOS levels were not notably different, we found that WP1130 significantly increased colocalization of iNOS with the Listeria-containing phagosome during infection. Taken together, our data indicate that the deubiquitinase inhibitor WP1130 increases bacterial killing in macrophages by enhancing iNOS localization to the phagosome and suggest a potential role for ubiquitin regulation in iNOS trafficking.


Assuntos
Macrófagos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Nitrilas/farmacologia , Fagossomos/enzimologia , Inibidores de Proteases/farmacologia , Piridinas/farmacologia , Animais , Linhagem Celular , Cianoacrilatos , Endopeptidases/metabolismo , Escherichia coli/fisiologia , Listeria monocytogenes/fisiologia , Macrófagos/enzimologia , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Transporte Proteico/efeitos dos fármacos , Ubiquitina/metabolismo
6.
Gene ; 489(2): 76-85, 2011 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21939744

RESUMO

The translocation of proteins across the bacterial cell wall is carried out by the general secretory (Sec) system. Most bacteria have a single copy of the secA gene, with the exception of a few Gram-positive bacteria, which have an additional copy of secA, designated secA2. secA2 is present in Listeria monocytogenes and is responsible for secretion and translocation of several proteins including virulence factors; however, little is known about the secA2 gene and its genetic organization in nonpathogenic members of the genus Listeria. The goal of this study was to determine the presence of secA2 locus and analyze the genetic relatedness among pathogenic and nonpathogenic Listeria species. Cloning experiments revealed that secA2 is present in all analyzed pathogenic (L. monocytogenes and L. ivanovii) and nonpathogenic (L. welshimeri, L. innocua, L. seeligeri, L. grayi and L. marthii) Listeria species except L. rocourtiae. Likewise, SecA2 transcripts were also detected in all species. Sequence analysis further revealed that 2331 nucleotides (776 amino acids) are conserved in L. monocytogenes, L. welshimeri, L. innocua and L. marthii. Three nucleotides are deleted in L. ivanovii and L. seeligeri and six in L. grayi, resulting in amino acid counts of 775, 775 and 774, respectively. secA2 is flanked upstream by iap (encoding p60) and downstream by a putative membrane protein (lmo0583, lmo f2365_0613) in all analyzed Listeria species, demonstrating conserved genetic organization of the secA2 locus in pathogenic and nonpathogenic species. Deletion of secA2 in L. innocua impaired accumulation of SecA2 substrate, N-acetyl muramidase (NamA) in the cell wall, providing evidence for the presence of functional SecA2 in nonpathogenic Listeria.


Assuntos
Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Listeria/genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Parede Celular/metabolismo , Primers do DNA , Variação Genética , Listeria/crescimento & desenvolvimento , Listeria/patogenicidade , Proteínas de Membrana Transportadoras/química , Dados de Sequência Molecular , Muramidase/metabolismo , Canais de Translocação SEC , Proteínas SecA , Análise de Sequência de DNA , Deleção de Sequência
7.
Infect Immun ; 78(12): 5062-73, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20876294

RESUMO

Listeria monocytogenes interaction with the intestinal epithelium is a key step in the infection process. We demonstrated that Listeria adhesion protein (LAP) promotes adhesion to intestinal epithelial cells and facilitates extraintestinal dissemination in vivo. The LAP receptor is a stress response protein, Hsp60, but the precise role for the LAP-Hsp60 interaction during Listeria infection is unknown. Here we investigated the influence of physiological stressors and Listeria infection on host Hsp60 expression and LAP-mediated bacterial adhesion, invasion, and transepithelial translocation in an enterocyte-like Caco-2 cell model. Stressors such as heat (41°C), tumor necrosis factor alpha (TNF-α) (100 U), and L. monocytogenes infection (10(4) to 10(6) CFU/ml) significantly (P < 0.05) increased plasma membrane and intracellular Hsp60 levels in Caco-2 cells and consequently enhanced LAP-mediated L. monocytogenes adhesion but not invasion of Caco-2 cells. In transepithelial translocation experiments, the wild type (WT) exhibited 2.7-fold more translocation through Caco-2 monolayers than a lap mutant, suggesting that LAP is involved in transepithelial translocation, potentially via a paracellular route. Short hairpin RNA (shRNA) suppression of Hsp60 in Caco-2 cells reduced WT adhesion and translocation 4.5- and 3-fold, respectively, while adhesion remained unchanged for the lap mutant. Conversely, overexpression of Hsp60 in Caco-2 cells enhanced WT adhesion and transepithelial translocation, but not those of the lap mutant. Furthermore, initial infection with a low dosage (10(6) CFU/ml) of L. monocytogenes increased plasma membrane and intracellular expression of Hsp60 significantly, which rendered Caco-2 cells more susceptible to subsequent LAP-mediated adhesion and translocation. These data provide insight into the role of LAP as a virulence factor during intestinal epithelial infection and pose new questions regarding the dynamics between the host stress response and pathogen infection.


Assuntos
Adesinas Bacterianas/fisiologia , Translocação Bacteriana/fisiologia , Chaperonina 60/biossíntese , Listeria monocytogenes/fisiologia , Listeriose/microbiologia , Receptores Imunológicos/biossíntese , Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Células CACO-2/metabolismo , Células CACO-2/microbiologia , Chaperonina 60/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Listeria monocytogenes/metabolismo , Listeriose/metabolismo , Microscopia de Fluorescência , Receptores Imunológicos/fisiologia
8.
Microbiology (Reading) ; 156(Pt 9): 2782-2795, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20507888

RESUMO

Listeria adhesion protein (LAP), an alcohol acetaldehyde dehydrogenase (lmo1634), interacts with host-cell receptor Hsp60 to promote bacterial adhesion during the intestinal phase of Listeria monocytogenes infection. The LAP homologue is present in pathogens (L. monocytogenes, L. ivanovii) and non-pathogens (L. innocua, L. welshimeri, L. seeligeri); however, its role in non-pathogens is unknown. Sequence analysis revealed 98 % amino acid similarity in LAP from all Listeria species. The N-terminus contains acetaldehyde dehydrogenase (ALDH) and the C-terminus an alcohol dehydrogenase (ADH). Recombinant LAP from L. monocytogenes, L. ivanovii, L. innocua and L. welshimeri exhibited ALDH and ADH activities, and displayed strong binding affinity (K(D) 2-31 nM) towards Hsp60. Flow cytometry, ELISA and immunoelectron microscopy revealed more surface-associated LAP in pathogens than non-pathogens. Pathogens exhibited significantly higher adhesion (P<0.05) to Caco-2 cells than non-pathogens; however, pretreatment of bacteria with Hsp60 caused 47-92 % reduction in adhesion only in pathogens. These data suggest that biochemical properties of LAP from pathogenic Listeria are similar to those of the protein from non-pathogens in many respects, such as substrate specificity, immunogenicity, and binding affinity to Hsp60. However, protein fractionation analysis of extracts from pathogenic and non-pathogenic Listeria species revealed that LAP was greatly reduced in intracellular and cell-surface protein fractions, and undetectable in the extracellular milieu of non-pathogens even though the lap transcript levels were similar for both. Furthermore, a LAP preparation from L. monocytogenes restored adhesion in a lap mutant (KB208) of L. monocytogenes but not in L. innocua, indicating possible lack of surface reassociation of LAP molecules in this bacterium. Taken together, these data suggest that LAP expression level, cell-surface localization, secretion and reassociation are responsible for LAP-mediated pathogenicity and possibly evolved to adapt to a parasitic life cycle in the host.


Assuntos
Adesinas Bacterianas/metabolismo , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/metabolismo , Aderência Bacteriana , Enterócitos/microbiologia , Listeria monocytogenes/enzimologia , Listeria monocytogenes/patogenicidade , Listeriose/microbiologia , Adesinas Bacterianas/genética , Álcool Desidrogenase/genética , Células CACO-2 , Humanos , Listeria/enzimologia , Listeria/genética , Listeria/patogenicidade , Listeria/fisiologia , Listeria monocytogenes/genética , Listeria monocytogenes/fisiologia
9.
Gut Pathog ; 1(1): 14, 2009 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-19589170

RESUMO

BACKGROUND: Physiological stressors may alter susceptibility of the host intestinal epithelium to infection by enteric pathogens. In the current study, cytotoxic effect, adhesion and invasion of Salmonella enterica serovar Typhimurium (S. Typhimurium) to Caco-2 cells exposed to thermal stress (41 degrees C, 1 h) was investigated. Probiotic bacteria have been shown to reduce interaction of pathogens with the epithelium under non-stress conditions and may have a significant effect on epithelial viability during infection; however, probiotic effect on pathogen interaction with epithelial cells under physiological stress is not known. Therefore, we investigated the influence of Lactobacillus rhamnosus GG and Lactobacillus gasseri on Salmonella adhesion and Salmonella-induced cytotoxicity of Caco-2 cells subjected to thermal stress. RESULTS: Thermal stress increased the cytotoxic effect of both S. Typhimurium (P = 0.0001) and nonpathogenic E. coli K12 (P = 0.004) to Caco-2 cells, and resulted in greater susceptibility of cell monolayers to S. Typhimurium adhesion (P = 0.001). Thermal stress had no significant impact on inflammatory cytokines released by Caco-2 cells, although exposure to S. Typhimurium resulted in greater than 80% increase in production of IL-6 and IL-8. Blocking S. Typhimurium with anti-ShdA antibody prior to exposure of Salmonella decreased adhesion (P = 0.01) to non-stressed and thermal-stressed Caco-2 cells. Pre-exposure of Caco-2 cells to L. rhamnosus GG significantly reduced Salmonella-induced cytotoxicity (P = 0.001) and Salmonella adhesion (P = 0.001) to Caco-2 cells during thermal stress, while L. gasseri had no effect. CONCLUSION: Results suggest that thermal stress increases susceptibility of intestinal epithelial Caco-2 cells to Salmonella adhesion, and increases the cytotoxic effect of Salmonella during infection. Use of L. rhamnosus GG as a probiotic may reduce the severity of infection during epithelial cell stress. Mechanisms by which thermal stress increases susceptibility to S. Typhimurium colonization and by which L. rhamnosus GG limits the severity of infection remain to be elucidated.

10.
Microbes Infect ; 11(10-11): 859-67, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19454322

RESUMO

Listeria adhesion protein (LAP), an alcohol acetaldehyde dehydrogenase homolog (lmo1634) in Listeria monocytogenes, promotes bacterial adhesion to intestinal epithelial cells in vitro. Investigation of the effect of anaerobiosis, an intrinsic gastrointestinal condition, on LAP expression and LAP-mediated infection should elucidate its significance during intestinal infection. The influence of anaerobiosis on LAP expression was determined by growing L. monocytogenes wild type (WT), and lap-deficient (KB208) and -complemented (CKB208) strains anaerobically and monitoring LAP in secreted, cell wall, and whole-cell protein fractions. The effect of anaerobiosis on LAP-mediated infection was evaluated in cell culture adhesion assays and mouse infection models. Additionally, the role of secretory system SecA2 in LAP secretion was investigated. Anaerobic growth induced significant increases in level of lap transcript and protein secretion, and secretion was SecA2-dependent. Anaerobiosis facilitated greater LAP-mediated adhesion of L. monocytogenes to cultured intestinal cells. Oral administration of WT, KB208 and CKB208 to mice confirmed that LAP is essential for full virulence, and anaerobically-grown WT exhibited greater translocation to liver and spleen relative to aerobically-grown organisms. LAP, a SecA2-dependent secreted virulence factor, plays an important role during intestinal infection, particularly when L. monocytogenes is subjected to an anaerobic environment.


Assuntos
Adesinas Bacterianas/biossíntese , Regulação Bacteriana da Expressão Gênica , Listeria monocytogenes/fisiologia , Anaerobiose , Animais , Aderência Bacteriana , Linhagem Celular , Parede Celular/química , Meios de Cultura/química , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Teste de Complementação Genética , Humanos , Listeria monocytogenes/química , Listeriose/microbiologia , Fígado/microbiologia , Camundongos , Camundongos Endogâmicos A , Baço/microbiologia , Virulência
11.
FEMS Microbiol Lett ; 256(2): 324-32, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16499624

RESUMO

Listeria adhesion protein (LAP) is an important adhesion factor in Listeria monocytogenes and interacts with its cognate receptor, mammalian heat shock protein 60 (Hsp60). The genetic identity of LAP was determined to be alcohol acetaldehyde dehydrogenase (Aad). A recombinant Escherichia coli strain expressing aad confirmed the involvement of Aad in adhesion to Caco-2 cells. Binding kinetics (ka) of recombinant LAP (rLAP) to Hsp60 was examined in a surface plasmon resonance sensor and was determined to be 5.35 x 10(8) M(-1) s(-1) and it was equivalent to the binding of anti-Hsp60 antibody (ka = 2.15 x 10(9) M(-1) s(-1)) to Hsp60. In contrast, Internalin B, an adhesion/invasion protein from L. monocytogenes, used as a control, had binding kinetics (ka) of only 2.9 x 10(6) M(-1) s(-1). The KD value of rLAP was 1.68 x 10(-8) M, which was significantly lower than Internalin B (KD = 6.5 x 10(-4) M). These results suggest that Hsp60 has significantly higher avidity for anti-Hsp60 antibody and LAP than Internalin B. In summary, LAP is identified as an alcohol acetaldehyde dehydrogenase and binding of recombinant E. coli to Caco-2 cells or rLAP to Hsp60 protein was found to be highly specific.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana , Chaperonina 60/metabolismo , Escherichia coli/fisiologia , Listeria monocytogenes/enzimologia , Adesinas Bacterianas/biossíntese , Adesinas Bacterianas/genética , Álcool Desidrogenase/biossíntese , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Células CACO-2 , Escherichia coli/genética , Humanos , Listeria monocytogenes/genética , Ligação Proteica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...