Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging Cell ; 9(3): 358-71, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20222902

RESUMO

Rothmund-Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas. The precise role of RECQL4 in cellular pathways is largely unknown; however, recent evidence suggests its involvement in multiple DNA metabolic pathways. This study investigates the roles of RECQL4 in DNA double-strand break (DSB) repair. The results show that RECQL4-deficient fibroblasts are moderately sensitive to gamma-irradiation and accumulate more gammaH2AX and 53BP1 foci than control fibroblasts. This is suggestive of defects in efficient repair of DSB's in the RECQL4-deficient fibroblasts. Real time imaging of live cells using laser confocal microscopy shows that RECQL4 is recruited early to laser-induced DSBs and remains for a shorter duration than WRN and BLM, indicating its distinct role in repair of DSBs. Endogenous RECQL4 also colocalizes with gammaH2AX at the site of DSBs. The RECQL4 domain responsible for its DNA damage localization has been mapped to the unique N-terminus domain between amino acids 363-492, which shares no homology to recruitment domains of WRN and BLM to the DSBs. Further, the recruitment of RECQL4 to laser-induced DNA damage is independent of functional WRN, BLM or ATM proteins. These results suggest distinct cellular dynamics for RECQL4 protein at the site of laser-induced DSB and that it might play important roles in efficient repair of DSB's.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA/metabolismo , RecQ Helicases/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , DNA/genética , Histonas/metabolismo , Humanos , Síndrome de Rothmund-Thomson/genética , Síndrome de Rothmund-Thomson/metabolismo , Síndrome de Rothmund-Thomson/patologia
2.
Gene ; 391(1-2): 26-38, 2007 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-17250975

RESUMO

Mutations in a human RecQ helicase homologue, RECQL4, have been identified in patients with Type II Rothmund-Thomson syndrome (RTS) with osteosarcoma predisposition, RAPADILINO syndrome, and Baller-Gerold syndrome. A role in DNA replication initiation has been demonstrated and mapped to the amino terminus upstream of the helicase domain; however, no nuclear localization signal (NLS) has been identified by sequence analysis. Here, we show both endogenous and green fluorescent protein (GFP)-tagged RECQL4 are nuclear and cytoplasmic in transformed cell lines. Using GFP-tagged constructs we identified a major nuclear localization domain within amino acids (aa) 363-492 (exons 5-8) sufficient for nuclear localization of GFP and necessary for nuclear localization of RECQL4 as GFP-RECQL4 deleted for aa 363-492 is entirely cytoplasmic. Additional mapping within this domain revealed that a conserved block of 22 basic amino acids (aa 365-386; exons 5-6) is sufficient for nuclear localization of GFP, but not required for nuclear import of RECQL4. Conversely, even though the region encoded by exon 7-8 is not sufficient for nuclear import of GFP, GFP-RECQL4 deleted for exon 7 (aa 420-463), a mutation found in all reported patients with RAPADILINO syndrome, is cytoplasmic. Nuclear localization of the exon 7 deletion construct is increased in cells treated with leptomycin B suggesting that exon 7 encodes a domain required for nuclear retention of RECQL4. This retention activity is partially conveyed by a conserved VLPLY motif (aa 450-454) in exon 7 of the human sequence. In summary, unlike other RecQ proteins with carboxyl terminal NLS, RECQL4 nuclear localization and retention activities are amino terminal. This location would provide nuclear transport of putative truncated proteins encoded by RTS mutant alleles consistent with the proposed essential replication function in the amino terminus of RECQL4.


Assuntos
Núcleo Celular/metabolismo , RecQ Helicases/genética , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação/genética , Linhagem Celular , Linhagem Celular Tumoral , Sequência Conservada/genética , Citoplasma/metabolismo , Ácidos Graxos Insaturados/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Sinais de Localização Nuclear/genética , RecQ Helicases/química , RecQ Helicases/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...