Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35848799

RESUMO

Cold exposure triggers neogenesis in classic interscapular brown adipose tissue (iBAT) that involves activation of ß1-adrenergic receptors, proliferation of PDGFRA+ adipose tissue stromal cells (ASCs), and recruitment of immune cells whose phenotypes are presently unknown. Single-cell RNA-sequencing (scRNA-seq) in mice identified three ASC subpopulations that occupied distinct tissue locations. Of these, interstitial ASC1 were found to be direct precursors of new brown adipocytes (BAs). Surprisingly, knockout of ß1-adrenergic receptors in ASCs did not prevent cold-induced neogenesis, whereas pharmacological activation of the ß3-adrenergic receptor on BAs was sufficient, suggesting that signals derived from mature BAs indirectly trigger ASC proliferation and differentiation. In this regard, cold exposure induced the delayed appearance of multiple macrophage and dendritic cell populations whose recruitment strongly correlated with the onset and magnitude of neogenesis across diverse experimental conditions. High-resolution immunofluorescence and single-molecule fluorescence in situ hybridization demonstrated that cold-induced neogenesis involves dynamic interactions between ASC1 and recruited immune cells that occur on the micrometer scale in distinct tissue regions. Our results indicate that neogenesis is not a reflexive response of progenitors to ß-adrenergic signaling, but rather is a complex adaptive response to elevated metabolic demand within brown adipocytes.


Assuntos
Adipócitos Marrons , Tecido Adiposo Marrom , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular/fisiologia , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Receptores Adrenérgicos beta 3/genética
2.
Metabolism ; 130: 155159, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150731

RESUMO

INTRODUCTION: The mobilization and catabolism of lipid energy is a central function of adipocytes that is under the control of the ß-adrenergic signaling pathway, and defects in ß-adrenergic signaling in adipocytes have been linked to obesity and obesity-related metabolic diseases. Receptor expression-enhancing proteins (REEPs) are endoplasmic reticulum (ER) proteins that play critical roles in subcellular targeting of receptor signaling complexes. Examination of gene expression profiles indicates that, among REEPs expressed in adipocytes, REEP6 expression is uniquely upregulated by sympathetic nervous system activation, suggesting involvement in regulating adrenergic signal transduction. OBJECTIVE: The aim of this study was to assess the contribution of REEP6 to the thermogenic activation of adipocytes and characterize the metabolic consequences of REEP6 deficiency in vivo. METHODS: Expression levels of Reep6 in adipose tissue were examined by using public transcriptomic data and validated by Western blot and qPCR analyses. Adipocyte-specific regulatory roles of REEP6 were investigated in vitro in C3H10T1/2 adipocytes and in primary adipocytes obtained from REEP6 KO mice. Effects of in vivo REEP6 deficiency on energy expenditure were measured by indirect calorimetry. Mitochondrial content in adipose tissue was accessed by immunoblot, mitochondrial DNA analysis, and confocal and electron microscopy. Effects of REEP6 KO on obesity-induced metabolic dysfunction were tested in a high-fat diet-induced obesity mouse model by glucose tolerance test, Western blot, and histological analyses. RESULTS: REEP6 expression is highly enriched in murine adipocytes and is sharply upregulated upon adipocyte differentiation and by cold exposure. Inactivation of REEP6 in mice increased adiposity, and reduced energy expenditure and cold tolerance. REEP6 KO severely reduced protein kinase A-mediated signaling in BAT and greatly reduced mitochondrial mass. The effect of REEP6 inactivation on diminished ß-adrenergic signaling was reproduced in cultured adipocytes, indicating that this effect is cell-autonomous. REEP6 KO also suppressed expression of adenylate cyclase 3 (Adcy3) in brown adipose tissue and knockdown of REEP6 in adipocytes reduced targeting of ADCY3 to the plasma membrane. Lastly, REEP6 KO exacerbated high-fat diet-induced insulin resistance and inflammation in adipose tissue. CONCLUSIONS: This study indicates that REEP6 plays an important role in ß-adrenergic signal transduction in adipocytes involving the expression and trafficking of Adcy3. Genetic inactivation of REEP6 reduces energy expenditure, increases adiposity, and the susceptibility to obesity-related metabolic dysfunction.


Assuntos
Adipócitos , Adrenérgicos , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Adrenérgicos/metabolismo , Animais , Dieta Hiperlipídica , Metabolismo Energético/genética , Proteínas do Olho/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Transdução de Sinais , Termogênese/genética
3.
Mol Metab ; 53: 101307, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34298199

RESUMO

OBJECTIVE: The current study addresses the cellular complexity and plasticity of subcutaneous (inguinal) white adipose tissue (iWAT) in mice during the critical periods of perinatal growth and establishment. METHODS: We performed a large-scale single cell transcriptomic (scRNA-seq) and epigenomic (snATAC-seq) characterization of cellular subtypes (adipose stromal cells (ASC) and adipocyte nuclei) during inguinal WAT (subcutaneous; iWAT) development in mice, capturing the early postnatal period (postnatal days (PND) 06 and 18) through adulthood (PND56). RESULTS: Perinatal and adult iWAT contain 3 major ASC subtypes that can be independently identified by RNA expression profiles and DNA transposase accessibility. Furthermore, the transcriptomes and enhancer landscapes of both ASC and adipocytes dynamically change during postnatal development. Perinatal ASC (PND06) are highly enriched for several imprinted genes (IGs; e.g., Mest, H19, Igf2) and extracellular matrix proteins whose expression then declines prior to weaning (PND18). By comparison, adult ASC (PND56) are more enriched for transcripts associated with immunoregulation, oxidative stress, and integrin signaling. Two clusters of mature adipocytes, identified through single nuclei RNA sequencing (snRNA-seq), were distinctive for proinflammatory/immune or metabolic gene expression patterns that became more transcriptionally diverse in adult animals. Single nuclei assay for transposase-accessible chromatin (snATAC-seq) revealed that differences in gene expression were associated with developmental changes in chromatin accessibility and predicted transcription factor motifs (e.g., Plagl1, Ar) in both stromal cells and adipocytes. CONCLUSIONS: Our data provide new insights into transcriptional and epigenomic signaling networks important during iWAT establishment at a single cell resolution, with important implications for the field of metabolic programming.


Assuntos
Tecido Adiposo Branco/metabolismo , Plasticidade Celular/genética , Análise de Célula Única , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Mol Metab ; 39: 101005, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32344065

RESUMO

OBJECTIVE: Beclin1 is a core molecule of the macroautophagy machinery. Although dysregulation of macroautophagy is known to be involved in metabolic disorders, the function of Beclin1 in adipocyte metabolism has not been investigated. In the present study, we aimed to study the role of Beclin1 in lipolysis and mitochondrial homeostasis of adipocytes. METHODS: Autophagic flux during lipolysis was examined in adipocytes cultured in vitro and in the adipose tissue of mice. Adipocyte-specific Beclin1 knockout (KO) mice were used to investigate the activities of Beclin1 in adipose tissues. RESULTS: cAMP/PKA signaling increased the autophagic flux in adipocytes differentiated from C3H10T1/2 cells. In vivo autophagic flux was higher in the brown adipose tissue (BAT) than that in the white adipose tissue and was further increased by the ß3 adrenergic receptor agonist CL316243. In addition, surgical denervation of BAT greatly reduced autophagic flux, indicating that sympathetic nerve activity is a major regulator of tissue autophagy. Adipocyte-specific KO of Beclin1 led to a hypertrophic enlargement of lipid droplets in BAT and impaired CL316243-induced lipolysis/lipid mobilization and energy expenditure. While short-term effects of Beclin1 deletion were characterized by an increase in mitochondrial proteins, long-term Beclin1 deletion led to severe disruption of autophagy, resulting in mitochondrial loss, and dramatically reduced the expression of genes involved in lipid metabolism. Consequently, adipose tissue underwent increased activation of cell death signaling pathways, macrophage recruitment, and inflammation, particularly in BAT. CONCLUSIONS: The present study demonstrates the critical roles of Beclin1 in the maintenance of lipid metabolism and mitochondrial homeostasis in adipose tissues.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Proteína Beclina-1/genética , Deleção de Genes , Lipólise/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Adipócitos/ultraestrutura , Tecido Adiposo Marrom/metabolismo , Animais , Autofagia/genética , Proteína Beclina-1/metabolismo , Linhagem Celular , AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Variações do Número de Cópias de DNA , Imunidade , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais , Termogênese/genética
5.
Cell Metab ; 28(2): 300-309.e4, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29937373

RESUMO

Recruitment of brown/beige adipocytes (BAs) in white adipose tissue (WAT) involves proliferation and differentiation of adipocyte stem cells (ASCs) in concert with close interactions with resident immune cells. To deconvolve stromal cell heterogeneity in a comprehensive and unbiased fashion, we performed single-cell RNA sequencing (scRNA-seq) of >33,000 stromal/vascular cells from epididymal WAT (eWAT) and inguinal WAT (iWAT) under control conditions and during ß3-adrenergic receptor (ADRB3) activation. scRNA-seq identified distinct ASC subpopulations in eWAT and iWAT that appeared to be differentially poised to enter the adipogenic pathway. ADRB3 activation triggered the dramatic appearance of proliferating ASCs in eWAT, whose differentiation into BAs could be inferred from a single time point. scRNA-seq identified various immune cell types in eWAT, including a proliferating macrophage subpopulation that occupies adipogenic niches. These results demonstrate the power of scRNA-seq to deconstruct adipogenic niches and suggest novel functional interactions among resident stromal cell subpopulations.


Assuntos
Adipogenia , Tecido Adiposo Branco/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Análise de Célula Única , Células-Tronco/metabolismo , Células Estromais/metabolismo , Transcriptoma , Tecido Adiposo Branco/citologia , Animais , Proliferação de Células , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA/métodos , Células-Tronco/citologia , Células Estromais/citologia
6.
Syst Biol Reprod Med ; 64(1): 25-38, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29199464

RESUMO

Idiopathic infertility, an etiology not identified as part of standard clinical assessment, represents approximately 20% of all infertility cases. Current male infertility diagnosis focuses on the concentration, motility, and morphology of spermatozoa. This is of limited value when predicting birth success and of limited utility when selecting the optimum treatment. At fertilization, spermatozoa provide their genomic contribution, as well as a set of RNAs and proteins that have distinct roles in development. The potential of spermatozoal RNAs to be used as a prognostic of live birth has been shown [Jodar et al. (2015) Science Translational Medicine 7(295):295re6]. This relied on a set of 648 sperm RNA elements derived from 285 genes that are perhaps indicative of future health status. To address this tenet, the present study correlated the levels of each transcript among all samples to assess linkage between transcript absence, birth success, and possible disease association. Correlations between transcript levels of the 285 genes were analyzed amongst themselves, and within the context of the entire transcript population for these samples. The transcripts ACE, GIGYF2, and ODF2 had many negative correlations and form the majority of correlations, suggesting an important function for these transcripts. Eleven of the 285 queried genes had disease-associated variants within a sperm RNA element. Three genes, GPX4, NDRG1, and RPS24 had SREs were absent in at least one individual from the test cohort. GPX4 and RPS24 are associated with developmental defects and/or neonatal lethality. This leaves the intriguing possibility that, while sperm RNAs delivered to the oocyte inform the success of live birth, they may also be predictors of human health. ABBREVIATIONS: GO: Gene Ontology; ART: assisted reproductive technology; IVF: in vitro fertilization; ICSI: intra-cytoplasmic sperm injection; RNA-seq: RNA-sequencing; TIC: timed intercourse; IUI: intrauterine insemination; SRE: sperm RNA elements; HPA: Human Protein Atlas; SMDS: sedaghatian-type spondylometaphyseal dysplasia; DBA: Diamond-Blackfan anemia; RPKM: reads per kilobase per million; TPM: transcripts per million; IPA: Ingenuity Pathway Analysis; OMIM: Online Mendelian Inheritance in Man.


Assuntos
Fertilidade/genética , Infertilidade/genética , RNA Mensageiro/genética , Saúde Reprodutiva , Espermatozoides/química , Transcriptoma , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Marcadores Genéticos , Humanos , Infertilidade/diagnóstico , Infertilidade/fisiopatologia , Nascido Vivo , Masculino , Gravidez , Biologia de Sistemas
7.
Front Genet ; 8: 175, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187863

RESUMO

Traumatic brain injury (TBI) can cause persistent pathological alteration of neurons. This may lead to cognitive dysfunction, depression and increased susceptibility to life threatening diseases, such as epilepsy and Alzheimer's disease. To investigate the underlying genetic and molecular basis of TBI, we subjected w1118Drosophila melanogaster to mild closed head trauma and found that mitochondrial activity is reduced in the brains of these flies 24 h after inflicting trauma. To determine the transcriptomic changes after mild TBI, we collected fly heads 24 h after inflicting trauma, and performed RNA-seq analyses. Classification of alternative splicing changes showed selective retention (RI) of long introns (>81 bps), with a mean size of ~3,000 nucleotides. Some of the genes containing RI showed a significant reduction in transcript abundance and are involved in mitochondrial metabolism such as Isocitrate dehydrogenase (Idh), which makes α-KG, a co-factor needed for both DNA and histone demethylase enzymes. The long introns are enriched in CA-rich motifs known to bind to Smooth (Sm), a heterogeneous nuclear ribonucleoprotein L (hnRNP-L) class of splicing factor, which has been shown to interact with the H3K36 histone methyltransferase, SET2, and to be involved in intron retention in human cells. H3K36me3 is a histone mark that demarcates exons in genes by interacting with the mRNA splicing machinery. Mutating sm (sm4/Df) resulted in loss of both basal and induced levels of RI in many of the same long-intron containing genes. Reducing the levels of Kdm4A, the H3K36me3 histone demethylase, also resulted in loss of basal levels of RI in many of the same long-intron containing genes. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) for H3K36me3 revealed increased levels of this histone modification in retained introns post-trauma at CA-rich motifs. Based on these results, we propose a model in which TBI temporarily decreases mitochondrial activity in the brain 24 h after inflicting trauma, which decreases α-KG levels, and increases H3K36me3 levels and intron retention of long introns by decreasing Kdm4A activity. The consequent reduction in mature mRNA levels in metabolism genes, such as Idh, further reduces α-KG levels in a negative feedback loop. We further propose that decreasing metabolism after TBI in such a manner is a protective mechanism that gives the brain time to repair cellular damage induced by TBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...