Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 27(7): 733-46, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24742073

RESUMO

Bacteria in the diverse Pseudomonas fluorescens group include rhizosphere inhabitants known for their antifungal metabolite production and biological control of plant disease, such as Pseudomonas protegens Pf-5, and mushroom pathogens, such as Pseudomonas tolaasii. Here, we report that strain Pf-5 causes brown, sunken lesions on peeled caps of the button mushroom (Agaricus bisporus) that resemble brown blotch symptoms caused by P. tolaasii. Strain Pf-5 produces six known antifungal metabolites under the control of the GacS/GacA signal transduction system. A gacA mutant produces none of these metabolites and did not cause lesions on mushroom caps. Mutants deficient in the biosynthesis of the antifungal metabolites 2,4-diacetylphloroglucinol and pyoluteorin caused less-severe symptoms than wild-type Pf-5 on peeled mushroom caps, whereas mutants deficient in the production of lipopeptide orfamide A caused similar symptoms to wild-type Pf-5. Purified pyoluteorin and 2,4-diacetylphloroglucinol mimicked the symptoms caused by Pf-5. Both compounds were isolated from mushroom tissue inoculated with Pf-5, providing direct evidence for their in situ production by the bacterium. Although the lipopeptide tolaasin is responsible for brown blotch of mushroom caused by P. tolaasii, P. protegens Pf-5 caused brown blotch-like symptoms on peeled mushroom caps through a lipopeptide-independent mechanism involving the production of 2,4-diacetylphloroglucinol and pyoluteorin.


Assuntos
Agaricales/efeitos dos fármacos , Antifúngicos/metabolismo , Proteínas de Bactérias/metabolismo , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Pseudomonas/metabolismo , Antifúngicos/química , Antifúngicos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Regulação Bacteriana da Expressão Gênica , Lipopeptídeos/genética , Mutação , Pseudomonas/genética
2.
ISME J ; 7(6): 1126-38, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23426012

RESUMO

The bacteriovorous nematode Caenorhabditis elegans has been used to investigate many aspects of animal biology, including interactions with pathogenic bacteria. However, studies examining C. elegans interactions with bacteria isolated from environments in which it is found naturally are relatively scarce. C. elegans is frequently associated with cultivation of the edible mushroom Agaricus bisporus, and has been reported to increase the severity of bacterial blotch of mushrooms, a disease caused by bacteria from the Pseudomonas fluorescens complex. We observed that pseudomonads isolated from mushroom farms showed differential resistance to nematode predation. Under nutrient poor conditions, in which most pseudomonads were consumed, the mushroom pathogenic isolate P. fluorescens NZI7 was able to repel C. elegans without causing nematode death. A draft genome sequence of NZI7 showed it to be related to the biocontrol strain P. protegens Pf-5. To identify the genetic basis of nematode repellence in NZI7, we developed a grid-based screen for mutants that lacked the ability to repel C. elegans. The mutants isolated in this screen included strains with insertions in the global regulator GacS and in a previously undescribed GacS-regulated gene cluster, 'EDB' ('edible'). Our results suggest that the product of the EDB cluster is a poorly diffusible or cell-associated factor that acts together with other features of NZI7 to provide a novel mechanism to deter nematode grazing. As nematodes interact with NZI7 colonies before being repelled, the EDB factor may enable NZI7 to come into contact with and be disseminated by C. elegans without being subject to intensive predation.


Assuntos
Agaricales , Caenorhabditis elegans/fisiologia , Cadeia Alimentar , Controle Biológico de Vetores , Pseudomonas fluorescens/metabolismo , Animais , Mutação , Pseudomonas fluorescens/classificação , Pseudomonas fluorescens/genética
3.
Environ Microbiol Rep ; 3(2): 203-10, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23761252

RESUMO

The Mycorrhiza Helper Bacterium (MHB) Pseudomonas fluorescens BBc6R8 promotes the ectomycorrhizal symbiosis between Douglas fir roots and Laccaria bicolor. In this study, we identified a non-flagellar type III secretion system (T3SS) in the draft genome of BBc6R8 similar to that described in the biocontrol strain P. fluorescens SBW25. We examined whether this T3SS plays a role in the BBc6R8 mycorrhizal helper effect by creating a deletion in the rscRST genes encoding the central channel of the injectisome. The in vitro effect of BBc6R8 T3SS mutants on the radial growth rate of L. bicolor was unchanged compared with the parental strain. In contrast, T3SS mutants were unable to promote mycorrhization, suggesting that type III secretion plays an important role in the mycorrhizal helper effect of P. fluorescens BBc6R8 independent of the promotion of hyphal growth that BBc6R8 exhibits in vitro.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...