Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38976193

RESUMO

A laboratory-scale mesophilic submerged anaerobic hybrid membrane bioreactor (An-HMBR) was operated for 270 days for the treatment of high-strength synthetic wastewater at different hydraulic retention times (HRTs) (3 days, 2 days, 1 day, and 0.5 days). Chemical oxygen demand (COD) removal efficiency of 92% was obtained with methane yield rate of 0.18 LCH4/g CODremoval at 1-day HRT. The results of lab scale reactor at 1-day HRT were utilized for upscaling and cost analysis. Cost analysis revealed that the total capital cost comprised tank system (48%), membrane cost (32%), screen and PUF sponge (5% each), PLCs (4%), liquid pumps (3%), and others (2%). The operational cost comprised chemical cost (46%), pumping energy (42%), and sludge disposal (12%). The results revealed that the tank and heating costs accounted for the largest fraction of the total life cycle cost for full-scale An-HMBR. The heating cost can be compensated by gas recovery. Sensitivity analysis revealed that the interest rates, influent flow, and membrane flux were the most crucial parameters which affected the total cost of An-HMBR.

2.
Environ Technol ; 42(26): 4158-4169, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32202215

RESUMO

This study was conducted to evaluate the performance of anammox reaction on the addition of iron. Iron was added in the form of FeSO4 starting with 2 mg/L (phase I), 5 mg/L (phase II), 8 mg/L (phase III), 10 mg/L (phase IV), 30 mg/L (phase V) and 50 mg/L (phase VI) on the addition of Fe (II) in anammox reactor. The efficiency of ammonia removal increased up to 90% with 5 mg/L of Fe (II) addition as compared to 77% when no Fe (II) was added. As the iron dosing was increased from 10 to 30 mg/L, ammonia removal declined sharply, which recovered slowly at steady-state condition. However, on the addition of 30 and 50 mg/L of Fe (II), the efficiency declined to 55% and 44%, respectively and did not recover. At 5 mg/L Fe (II) the nitrite removal was nearly 80% which declined to 44% at 50 mg/L. This was attributed to low pH values which hindered anammox activity. The mass balance study of nitrogen in the anammox process revealed that gas production was highest at 5 mg/L of Fe (II) conforming that 5 mg/L of Fe (II) is the optimum dose of iron for enhancing anammox reaction.


Assuntos
Reatores Biológicos , Ferro , Amônia , Nitrogênio , Oxirredução
3.
Waste Manag ; 108: 41-50, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32335487

RESUMO

In the present study, the treatment of synthetic landfill leachate was carried out using a lab-scale anaerobic hybrid membrane bioreactor (An-HMBR). The reactor was operated for 250 days at two days of hydraulic retention time (HRT). Average chemical oxygen demand (COD) removal efficiency was ≥ 88% at steady-state conditions at 100% raw leachate. As organic loading rate (OLR) increased from 1.6 to 13.9 Kg COD m-3 d-1, flux gradually declined from 70 to 52 L/m2 h (LMH) within 250 days. Chemical membrane cleaning enhanced the flux up to 75% of the initial flux at the final stage of the reactor. Reversible fouling (>90%) dominated over irreversible fouling (<8%). Membrane fouling was mainly caused by extracellular polymeric substances (EPS) fraction, which resulted in cake layer formation on the ceramic membrane used in the An-HMBR system. Membrane resistance increased with variables in the following order OLR > MLSS (mixed liquor suspended solids) > EPS > SMP (soluble microbial products). A nonlinear regression model developed for prediction of membrane resistance at different OLR can predict with an error of ±7%.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Membranas Artificiais
4.
Environ Technol ; 41(3): 309-321, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29978757

RESUMO

The prime objective of the present study is to evaluate the performance of novel up-flow anaerobic hybrid membrane bioreactor (An-HMBR) treating high-strength wastewater (synthetic) using polyurethane foam as filter media. Treatment efficiency of the entire An-HMBR varied from 88-97% corresponding to 0.67-3.90 d of hydraulic retention time (HRT) with organic loading rate of 6.4-1.06 kg COD m-3 d-1. The modified Stover-Kincannon model was the most appropriate model for An-HMBR and anaerobic hybrid bioreactor (excluding membrane). The suspended growth system in An-HMBR could be described by both modified Stover-Kincannon and Grau second order model. The attached growth system in An-HMBR followed conventional Monod's kinetics. A novel combination of suspended, attached and membrane in single reactor increased the solid retention time to as high as 756 d at 3.9 d HRT which not only improved the COD removal efficiency but also enhanced the performance of the membrane.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...