Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Stem Cells ; 42(6): 526-539, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38563224

RESUMO

To resist lineage-dependent therapies such as androgen receptor inhibition, prostate luminal epithelial adenocarcinoma cells often adopt a stem-like state resulting in lineage plasticity and phenotypic heterogeneity. Castrate-resistant prostate adenocarcinoma can transition to neuroendocrine (NE) and occasionally to amphicrine, co-expressed luminal and NE, phenotypes. We developed castrate-resistant prostate cancer (CRPC) patient-derived organoid models that preserve heterogeneity of the originating tumor, including an amphicrine model displaying a range of luminal and NE phenotypes. To gain biological insight and to identify potential treatment targets within heterogeneous tumor cell populations, we assessed the lineage hierarchy and molecular characteristics of various CRPC tumor subpopulations. Transcriptionally similar stem/progenitor (St/Pr) cells were identified for all lineage populations. Lineage tracing in amphicrine CRPC showed that heterogeneity originated from distinct subclones of infrequent St/Pr cells that produced mainly quiescent differentiated amphicrine progeny. By contrast, adenocarcinoma CRPC progeny originated from St/Pr cells and self-renewing differentiated luminal cells. Neuroendocrine prostate cancer (NEPC) was composed almost exclusively of self-renewing St/Pr cells. Amphicrine subpopulations were enriched for secretory luminal, mesenchymal, and enzalutamide treatment persistent signatures that characterize clinical progression. Finally, the amphicrine St/Pr subpopulation was specifically depleted with an AURKA inhibitor, which blocked tumor growth. These data illuminate distinct stem cell (SC) characteristics for subtype-specific CRPC in addition to demonstrating a context for targeting differentiation-competent prostate SCs.


Assuntos
Linhagem da Célula , Células-Tronco Neoplásicas , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Linhagem da Célula/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Diferenciação Celular , Feniltioidantoína/farmacologia , Feniltioidantoína/análogos & derivados , Camundongos , Benzamidas , Nitrilas
2.
Nat Commun ; 15(1): 3018, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589357

RESUMO

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced acute GI syndrome. Through single-cell RNA-sequencing of the irradiated mouse small intestine, we find that p53 target genes are specifically enriched in regenerating epithelial cells that undergo fetal-like reversion, including revival stem cells (revSCs) that promote animal survival after severe damage of the GI tract. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce fetal-like revSCs. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells and is controlled by an Mdm2-mediated negative feedback loop. Together, our findings reveal that p53 suppresses severe radiation-induced GI injury by promoting fetal-like reprogramming of irradiated intestinal epithelial cells.


Assuntos
Lesões por Radiação , Proteína Supressora de Tumor p53 , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Intestinos , Trato Gastrointestinal/metabolismo , Lesões por Radiação/genética , Lesões por Radiação/metabolismo , Células-Tronco/metabolismo , Apoptose/genética
3.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162959

RESUMO

Ionizing radiation induces cell death in the gastrointestinal (GI) epithelium by activating p53. However, p53 also prevents animal lethality caused by radiation-induced GI injury. Through single-cell RNA-sequencing of the irradiated mouse intestine, we find that p53 target genes are specifically enriched in stem cells of the regenerating epithelium, including revival stem cells that promote animal survival after GI damage. Accordingly, in mice with p53 deleted specifically in the GI epithelium, ionizing radiation fails to induce revival stem cells. Using intestinal organoids, we show that transient p53 expression is required for the induction of revival stem cells that is controlled by an Mdm2-mediated negative feedback loop. These results suggest that p53 suppresses severe radiation-indued GI injury by promoting intestinal epithelial cell reprogramming. One-Sentence Summary: After severe radiation injury to the intestine, transient p53 activity induces revival stem cells to promote regeneration.

4.
Front Oncol ; 12: 1021057, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36411863

RESUMO

The presence of lymph node metastases is a well-studied prognostic factor for cutaneous melanoma. Characterization of melanoma lymph node metastases and their association with survival in multiple, large observational studies has led to recognition of the following high-risk features: quantity of lymph node metastases (number of nodes), size of the nodal tumor deposit (in mm), and extracapsular extension. Despite increasing utilization of these features in the design of randomized clinical trials, in addition to their role in contemporary clinical decision-making, current staging systems lag behind, only accounting for the quantity of lymph nodes with metastases. Herein, we review the prognostic role of melanoma lymph node metastases and their high-risk features, current reporting standards, how such features have been utilized in practice-changing trials, and best practices for future clinical trial design and clinical decision-making.

5.
Front Genet ; 13: 992406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176296

RESUMO

Purpose: Glycogen storage disease type IV (GSD IV) has historically been divided into discrete hepatic (classic hepatic, non-progressive hepatic) and neuromuscular (perinatal-congenital neuromuscular, juvenile neuromuscular) subtypes. However, the extent to which this subtype-based classification system accurately captures the landscape of phenotypic variation among GSD IV patients has not been systematically assessed. Methods: This study synthesized clinical data from all eligible cases of GSD IV in the published literature to evaluate whether this disorder is better conceptualized as discrete subtypes or a clinical continuum. A novel phenotypic scoring approach was applied to characterize the extent of hepatic, neuromuscular, and cardiac involvement in each eligible patient. Results: 146 patients met all inclusion criteria. The majority (61%) of those with sufficient data to be scored exhibited phenotypes that were not fully consistent with any of the established subtypes. These included patients who exhibited combined hepatic-neuromuscular involvement; patients whose phenotypes were intermediate between the established hepatic or neuromuscular subtypes; and patients who presented with predominantly cardiac disease. Conclusion: The application of this novel phenotypic scoring approach showed that-in contrast to the traditional subtype-based view-GSD IV may be better conceptualized as a multidimensional clinical continuum, whereby hepatic, neuromuscular, and cardiac involvement occur to varying degrees in different patients.

6.
Int J Mol Sci ; 23(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35328625

RESUMO

Advanced prostate cancer (PCa) patients with bone metastases are treated with androgen pathway directed therapy (APDT). However, this treatment invariably fails and the cancer becomes castration resistant. To elucidate resistance mechanisms and to provide a more predictive pre-clinical research platform reflecting tumor heterogeneity, we established organoids from a patient-derived xenograft (PDX) model of bone metastatic prostate cancer, PCSD1. APDT-resistant PDX-derived organoids (PDOs) emerged when cultured without androgen or with the anti-androgen, enzalutamide. Transcriptomics revealed up-regulation of neurogenic and steroidogenic genes and down-regulation of DNA repair, cell cycle, circadian pathways and the severe acute respiratory syndrome (SARS)-CoV-2 host viral entry factors, ACE2 and TMPRSS2. Time course analysis of the cell cycle in live cells revealed that enzalutamide induced a gradual transition into a reversible dormant state as shown here for the first time at the single cell level in the context of multi-cellular, 3D living organoids using the Fucci2BL fluorescent live cell cycle tracker system. We show here a new mechanism of castration resistance in which enzalutamide induced dormancy and novel basal-luminal-like cells in bone metastatic prostate cancer organoids. These PDX organoids can be used to develop therapies targeting dormant APDT-resistant cells and host factors required for SARS-CoV-2 viral entry.


Assuntos
Neoplasias Ósseas/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Organoides/metabolismo , Neoplasias de Próstata Resistentes à Castração/genética , Androgênios/farmacologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Benzamidas/farmacologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transplante Heterólogo , Internalização do Vírus
7.
J Transl Med ; 18(1): 214, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32466781

RESUMO

BACKGROUND: Immunotherapeutic regulation of the tumor microenvironment in prostate cancer patients is not understood. Most antibody immunotherapies have not succeeded in prostate cancer. We showed previously that high-risk PCa patients have a higher density of tumor infiltrating B-cells in prostatectomy specimens. In mouse models, anti-CD20 antibody ablation of B-cells delayed PCa regrowth post-treatment. We sought to determine whether neoadjuvant anti-CD20 immunotherapy with rituximab could reduce CD20+ B cell infiltration of prostate tumors in patients. METHODS: An open label, single arm clinical trial enrolled eight high-risk PCa patients to receive one cycle of neoadjuvant rituximab prior to prostatectomy. Eleven clinical specimens with similar characteristics were selected as controls. Treated and control samples were concurrently stained for CD20 and digitally scanned in a blinded fashion. A new method of digital image quantification of lymphocytes was applied to prostatectomy sections of treated and control cases. CD20 density was quantified by a deconvolution algorithm in pathologist-marked tumor and adjacent regions. Statistical significance was assessed by one sided Welch's t-test, at 0.05 level using a gatekeeper strategy. Secondary outcomes included CD3+ T-cell and PD-L1 densities. RESULTS: Mean CD20 density in the tumor regions of the treated group was significantly lower than the control group (p = 0.02). Mean CD3 density in the tumors was significantly decreased in the treated group (p = 0.01). CD20, CD3 and PD-L1 staining primarily occurred in tertiary lymphoid structures (TLS). Neoadjuvant rituximab was well-tolerated and decreased B-cell and T-cell density within high-risk PCa tumors compared to controls. CONCLUSIONS: This is the first study to treat patients prior to surgical prostate removal with an immunotherapy that targets B-cells. Rituximab treatment reduced tumor infiltrating B and T-cell density especially in TLSs, thus, demonstrating inter-dependence between B- and T-cells in prostate cancer and that Rituximab can modify the immune environment in prostate tumors. Future studies will determine who may benefit from using rituximab to improve their immune response against prostate cancer. Trial registration NCT01804712, March 5th, 2013 https://clinicaltrials.gov/ct2/show/NCT01804712?cond=NCT01804712&draw=2&rank=1.


Assuntos
Terapia Neoadjuvante , Neoplasias da Próstata , Animais , Antígeno B7-H1 , Humanos , Linfócitos do Interstício Tumoral , Masculino , Camundongos , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia , Rituximab/uso terapêutico , Linfócitos T , Microambiente Tumoral
8.
J Vis Exp ; (156)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32065165

RESUMO

Three-dimensional (3D) culture of organoids from tumor specimens of human patients and patient-derived xenograft (PDX) models of prostate cancer, referred to as patient-derived organoids (PDO), are an invaluable resource for studying the mechanism of tumorigenesis and metastasis of prostate cancer. Their main advantage is that they maintain the distinctive genomic and functional heterogeneity of the original tissue compared to conventional cell lines that do not. Furthermore, 3D cultures of PDO can be used to predict the effects of drug treatment on individual patients and are a step towards personalized medicine. Despite these advantages, few groups routinely use this method in part because of the extensive optimization of PDO culture conditions that may be required for different patient samples. We previously demonstrated that our prostate cancer bone metastasis PDX model, PCSD1, recapitulated the resistance of the donor patient's bone metastasis to anti-androgen therapy. We used PCSD1 3D organoids to characterize further the mechanisms of anti-androgen resistance. Following an overview of currently published studies of PDX and PDO models, we describe a step-by-step protocol for 3D culture of PDO using domed or floating basement membrane (e.g., Matrigel) spheres in optimized culture conditions. In vivo stitch imaging and cell processing for histology are also described. This protocol can be further optimized for other applications including western blot, co-culture, etc. and can be used to explore characteristics of 3D cultured PDO pertaining to drug resistance, tumorigenesis, metastasis and therapeutics.


Assuntos
Neoplasias Ósseas/secundário , Organoides/patologia , Neoplasias da Próstata/patologia , Técnicas de Cultura de Tecidos , Neoplasias Ósseas/patologia , Xenoenxertos , Humanos , Masculino
9.
Drug Deliv Transl Res ; 9(6): 1095-1105, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31228097

RESUMO

Poly(lactic-co-glycolic) acid (PLGA) has been successfully used in drug delivery and biomaterial applications, but very little attention has been directed towards the potential in vivo effects of peptide-loaded PLGA nanoparticles (NPs), specifically the potency of intravenous (IV) STEAP peptide-loaded PLGA-NP (nanovaccine) dosing and whether STEAP-specific CD8+ T cells directly play a key role in tumor inhibition. To address these concerns, syngeneic prostate cancer mouse models were established and treated with either mSTEAP peptide emulsified in incomplete Freund's adjuvant (IFA) via subcutaneous (SC) injection or mSTEAP peptide nanovaccine containing the same amount of peptide via IV or SC injection. Meanwhile, mice were treated with either CD8b mAb followed by nanovaccine treatment, free mSTEAP peptide, or empty PLGA-NPs. Immune responses in these mice were examined using cytotoxicity assays at 14 days after treatment. Tumor size and survival in various treatment groups were measured and monitored. The results demonstrated that mSTEAP peptide nanovaccine resulted in tumor inhibition by eliciting a significantly stronger CD8+ T cell immune response when compared with the controls. Moreover, the survival periods of mice treated with mSTEAP nanovaccine were significantly longer than those of mice treated with mSTEAP peptide emulsified in IFA or the treatment controls. Additionally, it was observed that the peptide nanovaccine was mainly distributed in the mouse liver and lungs after IV injection. These findings suggest that the peptide nanovaccine is a promising immunotherapeutic approach and offers a new opportunity for prostate cancer therapies.


Assuntos
Antígenos de Neoplasias/administração & dosagem , Linfócitos T CD8-Positivos/efeitos dos fármacos , Vacinas Anticâncer/administração & dosagem , Nanopartículas/administração & dosagem , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Animais , Antígenos de Neoplasias/farmacologia , Linfócitos T CD8-Positivos/imunologia , Vacinas Anticâncer/farmacocinética , Linhagem Celular Tumoral , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacocinética , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/metabolismo
10.
Immunology ; 152(3): 462-471, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28664991

RESUMO

Peptide recognition through the MHC class I molecule by cytotoxic T lymphocytes (CTLs) leads to the killing of cancer cells. A potential challenge for T-cell immunotherapy is that dendritic cells (DCs) are exposed to the MHC class I-peptide complex for an insufficient amount of time. To improve tumour antigen presentation to T cells and thereby initiate a more effective T-cell response, we generated artificial antigen-presenting cells (aAPCs) by incubating human immature DCs (imDCs) with poly(lactic-co-glycolic) acid nanoparticles (PLGA-NPs) encapsulating tumour antigenic peptides, followed by maturation with lipopolysaccharide. Tumour antigen-specific CTLs were then induced using either peptide-loaded mature DCs (mDCs) or aAPCs, and their activities were analysed using both ELISpot and cytotoxicity assays. We found that the aAPCs induced significantly stronger tumour antigen-specific CTL responses than the controls, which included both mDCs and aAPCs loaded with empty nanoparticles. Moreover, frozen CTLs that were generated by exposure to aAPCs retained the capability to eradicate HLA-A2-positive tumour antigen-bearing cancer cells. These results indicated that aAPCs are superior to DCs when inducing the CTL response because the former are capable of continuously presenting tumour antigens to T cells in a sustained manner. The development of aAPCs with PLGA-NPs encapsulating tumour antigenic peptides is a promising approach for the generation of effective CTL responses in vitro and warrants further assessments in clinical trials.


Assuntos
Apresentação de Antígeno , Vacinas Anticâncer/farmacologia , Citotoxicidade Imunológica/efeitos dos fármacos , Células Dendríticas/efeitos dos fármacos , Proteínas Inibidoras de Apoptose/farmacologia , Ácido Láctico/química , Lipopolissacarídeos/farmacologia , Antígeno MART-1/farmacologia , Nanopartículas , Neoplasias/terapia , Fragmentos de Peptídeos/farmacologia , Ácido Poliglicólico/química , Linfócitos T Citotóxicos/efeitos dos fármacos , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , Sobrevivência Celular/efeitos dos fármacos , Preparações de Ação Retardada , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/imunologia , Cinética , Lipopolissacarídeos/imunologia , Antígeno MART-1/química , Antígeno MART-1/imunologia , Células MCF-7 , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solubilidade , Survivina , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo
11.
Int Immunopharmacol ; 47: 159-165, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28410529

RESUMO

Cytotoxic T lymphocytes (CTLs) are a key player in cancer immunotherapies, and MHC class I molecules on the cell surface are crucial for cellular recognition. However, the aberrant expression of MHC class I molecules is frequently found in various malignancies. IFNγ has dual functions in cancer progression, and its effect on tumor immunity is controversial. To investigate whether IFNγ can enhance cytotoxic efficiency of the tumor antigen-specific CTLs, we generated the CTLs using modified human dendritic cells as antigen presenting cells, then studied the activities of CTLs on human leukocyte antigen (HLA)-A2 positive glioma cells treated with, or without IFNγ. The results from both ELISpot and cytotoxicity assays demonstrated that the CTLs recognized and eliminated the HLA-A2 positive glioma cells treated with IFNγ more effectively when compared to the glioma cells deprived of IFNγ treatment. In addition, in vitro experiments showed that the levels of MHC class I molecules were upregulated in all of the HLA-A2 positive glioma cells. Using the publicly accessed TCGA data of low-grade glioma, we found significantly positive associations between IFNγ and both MHC class I molecules and CD8+ T cell activation score (p<0.0001). Furthermore, we found a significantly reduced risk of death in the glioma patients with high T cell activation score in comparison to those with low score (p=0.022). These findings suggest that a clinical application of IFNγ treatment may have potential benefits.


Assuntos
Células Dendríticas/imunologia , Glioma/imunologia , Antígeno HLA-A2/metabolismo , Imunoterapia Adotiva/métodos , Interferon gama/metabolismo , Linfócitos T Citotóxicos/imunologia , Apresentação de Antígeno , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , ELISPOT , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação Linfocitária , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...