Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(13): 8623-31, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25694426

RESUMO

Pexophagy is a process that selectively degrades peroxisomes by autophagy. The Pichia pastoris pexophagy receptor Atg30 is recruited to peroxisomes under peroxisome proliferation conditions. During pexophagy, Atg30 undergoes phosphorylation, a prerequisite for its interactions with the autophagy scaffold protein Atg11 and the ubiquitin-like protein Atg8. Atg30 is subsequently shuttled to the vacuole along with the targeted peroxisome for degradation. Here, we defined the binding site for Atg30 on the peroxisomal membrane protein Pex3 and uncovered a role for Pex3 in the activation of Atg30 via phosphorylation and in the recruitment of Atg11 to the receptor protein complex. Pex3 is classically a docking protein for other proteins that affect peroxisome biogenesis, division, and segregation. We conclude that Pex3 has a role beyond simple docking of Atg30 and that its interaction with Atg30 regulates pexophagy in the yeast P. pastoris.


Assuntos
Autofagia , Proteínas Fúngicas/metabolismo , Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Pichia/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico
2.
EMBO Mol Med ; 6(4): 551-66, 2014 04.
Artigo em Inglês | MEDLINE | ID: mdl-24578415

RESUMO

In addition to key roles in embryonic neurogenesis and myelinogenesis, γ-aminobutyric acid (GABA) serves as the primary inhibitory mammalian neurotransmitter. In yeast, we have identified a new role for GABA that augments activity of the pivotal kinase, Tor1. GABA inhibits the selective autophagy pathways, mitophagy and pexophagy, through Sch9, the homolog of the mammalian kinase, S6K1, leading to oxidative stress, all of which can be mitigated by the Tor1 inhibitor, rapamycin. To confirm these processes in mammals, we examined the succinic semialdehyde dehydrogenase (SSADH)-deficient mouse model that accumulates supraphysiological GABA in the central nervous system and other tissues. Mutant mice displayed increased mitochondrial numbers in the brain and liver, expected with a defect in mitophagy, and morphologically abnormal mitochondria. Administration of rapamycin to these mice reduced mTOR activity, reduced the elevated mitochondrial numbers, and normalized aberrant antioxidant levels. These results confirm a novel role for GABA in cell signaling and highlight potential pathomechanisms and treatments in various human pathologies, including SSADH deficiency, as well as other diseases characterized by elevated levels of GABA.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Autofagia , Succinato-Semialdeído Desidrogenase/deficiência , Serina-Treonina Quinases TOR/metabolismo , Ácido gama-Aminobutírico/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Animais , Encéfalo/metabolismo , Deficiências do Desenvolvimento , Humanos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo , Succinato-Semialdeído Desidrogenase/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética
3.
EMBO Rep ; 14(5): 441-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23559066

RESUMO

The selective autophagy receptors Atg19 and Atg32 interact with two proteins of the core autophagic machinery: the scaffold protein Atg11 and the ubiquitin-like protein Atg8. We found that the Pichia pastoris pexophagy receptor, Atg30, also interacts with Atg8. Both Atg30 and Atg32 interactions are regulated by phosphorylation close to Atg8-interaction motifs. Extending this finding to Saccharomyces cerevisiae, we confirmed phosphoregulation for the mitophagy and pexophagy receptors, Atg32 and Atg36. Each Atg30 molecule must interact with both Atg8 and Atg11 for full functionality, and these interactions occur independently and not simultaneously, but rather in random order. We present a common model for the phosphoregulation of selective autophagy receptors.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Autofagia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Sítios de Ligação , Sequência Consenso , Técnicas de Inativação de Genes , Mitofagia , Dados de Sequência Molecular , Fosforilação , Pichia/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Receptores de Superfície Celular/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Homologia de Sequência de Aminoácidos
4.
Int J Cell Biol ; 2012: 512721, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22536249

RESUMO

Peroxisomes are single-membrane-bounded organelles present in the majority of eukaryotic cells. Despite the existence of great diversity among different species, cell types, and under different environmental conditions, peroxisomes contain enzymes involved in ß-oxidation of fatty acids and the generation, as well as detoxification, of hydrogen peroxide. The exigency of all eukaryotic cells to quickly adapt to different environmental factors requires the ability to precisely and efficiently control peroxisome number and functionality. Peroxisome homeostasis is achieved by the counterbalance between organelle biogenesis and degradation. The selective degradation of superfluous or damaged peroxisomes is facilitated by several tightly regulated pathways. The most prominent peroxisome degradation system uses components of the general autophagy core machinery and is therefore referred to as "pexophagy." In this paper we focus on recent developments in pexophagy and provide an overview of current knowledge and future challenges in the field. We compare different modes of pexophagy and mention shared and distinct features of pexophagy in yeast model systems, mammalian cells, and other organisms.

5.
Blood ; 113(12): 2843-50, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19047682

RESUMO

The iron regulatory hormone hepcidin is transcriptionally up-regulated in response to iron loading, but the mechanisms by which iron levels are sensed are not well understood. Large-scale genetic screens in the zebrafish have resulted in the identification of hypochromic anemia mutants with a range of mutations affecting conserved pathways in iron metabolism and heme synthesis. We hypothesized that transferrin plays a critical role both in iron transport and in regulating hepcidin expression in zebrafish embryos. Here we report the identification and characterization of the zebrafish hypochromic anemia mutant, gavi, which exhibits transferrin deficiency due to mutations in transferrin-a. Morpholino knockdown of transferrin-a in wild-type embryos reproduced the anemia phenotype and decreased somite and terminal gut iron staining, while coinjection of transferrin-a cRNA partially restored these defects. Embryos with transferrin-a or transferrin receptor 2 (TfR2) deficiency exhibited low levels of hepcidin expression, however anemia, in the absence of a defect in the transferrin pathway, failed to impair hepcidin expression. These data indicate that transferrin-a transports iron and that hepcidin expression is regulated by a transferrin-a-dependent pathway in the zebrafish embryo.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hepcidinas/fisiologia , Ferro/metabolismo , Transferrina/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Sequência de Aminoácidos , Anemia Hipocrômica/induzido quimicamente , Anemia Hipocrômica/embriologia , Anemia Hipocrômica/genética , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Eritropoese/efeitos dos fármacos , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Hepcidinas/biossíntese , Hepcidinas/deficiência , Hepcidinas/genética , Humanos , Ferro/farmacologia , Dados de Sequência Molecular , Mutação , Especificidade de Órgãos , Fenil-Hidrazinas/toxicidade , Receptores da Transferrina/antagonistas & inibidores , Receptores da Transferrina/genética , Receptores da Transferrina/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Transferrina/deficiência , Transferrina/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...